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I. INTRODUCTION

[Covariance matrix estimation] A fundamental problem in

Modern multivariate data analysis is the estimation of covari-

ance matrices, which has widespread application across nu-

merous fields, including statistics [2], biology [3]–[5], finance

[6]–[8], signal processing [9]–[11], and machine learning [12].

The sample covariance matrix (SCM), which originates as the

maximum likelihood estimator under a multivariate normal

model, is simple, consistent and has a low asymptotic variance

under various distributional assumptions. However, when the

sample size is relatively small in comparison with the data

dimension, the sample covariance can no longer benefit from

its nice asymptotic properties.

[sparsity/high-dimensional covariance estimation methods,

see Wei’s introduction] When the data dimension is large,

the covariance estimation problem becomes intractable. This

is because the number of parameters to be estimated grows

quadratically with the dimension of the covariance matrix.

To reduce the number of parameters to be estimated, we

need to introduce structural assumptions on the underlying

covariance matrix, and one of the most popular assumptions

is sparsity. A commonly used method for estimating sparse

covariance matrices is called thresholding [13]–[15], which

is to set small elements in the SCM to zeros. In particular,

the soft thresholding covariance estimator is equivalent to

the (unconstrained) ℓ1-regularized sparse covariance estimator,

which has been extensively studied (see [16]–[18]) and is

proved to achieve the minimax optimal statistical rate under

sub-Gaussian data. However, the ℓ1 penalty introduces a non-

negligible bias into the resulting estimator. To alleviate this

bias effect, [1] substitutes the ℓ1 penalty with a non-convex

penalty, which results in a more refined estimator that achieves

the oracle rate under sub-Gaussian data.

[why robustness/outliers] Despite the proceedings in de-

veloping high-dimensional covariance estimators, theoretical

properties of large covariance estimators in the literature often

hinge heavily on the Gaussian or sub-Gaussian assumption.
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However, such an assumption is very restrictive in some real-

world scenarios, because the collected data is often contam-

inated by heavy-tailed noise. For instance, data from fields

including biology [19] and finance [20] possess a heavy-

tailed nature. The presence of heavy-tailed noise increases

the frequency of outliers. An estimator that is robust against

the outliers caused by heavy-tailed noise, evidenced by its

better finite-sample performance than a non-robust estimator,

is called a tail-robust estimator [21], [22]. The work of [23]

inspires the design of tail-robust estimators in various statistics

problems, including mean estimation [24], regression [25], and

covariance estimation [26]. Those estimators are featured by

tight non-asymptotic error bounds.

[Robust covariance: existing methods] In particular, tail-

robust covariance estimators have been extensively studied.

A line of work studies the robust-loss M-estimator [21], [27]–

[29], with Huber’s M-estimator [30] being the most representa-

tive. For instance, [29] uses Huber’s M-estimators to estimate

the first and second moments separately, which are then

combined to obtain a robust covariance estimator. To avoid the

accumulated error from combining the estimates of first and

second moments, [21] proposes to use the pairwise difference

approach [28] to directly estimate the covariance matrix.

To optimize the performance of the robust-loss M-estimator,

we need to carefully select the robustification parameter in

its loss function. With a diverging robustification parameter

adapted to the sample size, dimension and the noise level

[31], Huber’s M-estimators (and many other robust loss M-

estimators) have achieved the optimal deviation bound in ℓ∞
norm or spectral norm, assuming only a finite fourth moment

for the distribution of data [21], [27], [28], [32]. A closely

related covariance estimator uses truncation to eliminate out-

liers introduced by heavy-tailed noises [21], which is simpler

and more computationally efficient than Huber’s M-estimator,

but still requires a selection of the robustification parameter.

Another robust covariance estimator based on the median-

of-means technique [33]–[35] avoids the robustification pa-

rameter in its formulation. This estimator randomly partitions

the data into a prespecified number of groups, calculates the

sample covariance matrices of those groups, and computes

their median in each entry to obtain the final estimate. This

method avoids the selection of robustification parameters and

can be tuning-free, but requires a more restrictive assumption

than a finite fourth moment, e.g. a finite sixth moment.

There are also correlation-based methods that combine the

estimation of correlation matrices with the robust estimation of

marginal deviations to obtain a robust covariance estimator: By
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exploiting a bijective mapping between the correlation matrix

and Kendall’s tau or Spearman’s rho dependence measures,

[36] and [37] both proposed rank-based correlation estimators

for heavy-tailed elliptical distributions, which can be combined

with marginal standard deviations estimated via various robust

methods [22], [29], [38] to obtain a robust covariance esti-

mator. The aforementioned estimators are mostly constructed

and analyzed in an entrywise manner. There are also robust

covariance estimators that are studied from a spectrumwise

perspective [26], [39].

[why robust + sparsity/high-dimensional] To develop robust

covariance estimators for high-dimensional covariance matri-

ces, we need to introduce structural assumptions. We will

first focus on the sparsity assumption mentioned earlier. A

common robust sparse covariance estimation method is to first

introduce a robust pilot estimator1 as a robust substitution of

the sample covariance matrix, then apply thresholding to the

pilot estimator as in [29] and [40], or apply ℓ1 regularization

to the pilot estimator as in [41]. In particular, for the robust

pilot estimator, [29] considers the median-of-means estimator,

Huber’s M-estimator and the rank-based estimator; [41] uses

their proposed quantile-based covariance estimator as the ro-

bust pilot estimator; and [40] uses Maronna’s estimator as the

robust pilot estimator. Apart from the sparsity in the covariance

matrix itself, we can also assume the sparsity in its spectral,

which is usually called the low rank assumption. To utilize

the latent low rank structure and obtain robust estimators with

a tight deviation under the Frobenius norm, [27] considers

a trace-norm-regularized M-estimator proposed by [42], but

substitutes the sample covariance it use with a robust pilot

estimator.

As illustrated above, all existing robust sparse covariance es-

timation methods follow a two-step procedure, where a robust

pilot estimator is introduced in the first step, and thresholding

or ℓ1 regularization is applied to the pilot estimator [29], [40],

[41] in the second step. To obtain a robust pilot estimator, [29]

uses Huber’s M-estimators to estimate the first and second

moments separately, which are then combined to obtain a

robust covariance estimator. To avoid the accumulated error

from combining the estimates of first and second moments,

[21] uses the pairwise difference approach to directly obtain

a covariance estimator. However, the estimators proposed

by [29] and [21] are not guaranteed to be positive-definite,

which is important for the covariance estimation problem. To

simultaneously achieve sparsity and positive-definiteness, [41]

adds a positive-definite constraint to the ℓ1 regularization step.

In general, all existing tail-robust sparse covariance estimation

procedures proceed in two separate steps, with the first step

being a “robustification” procedure which results in a robust

pilot estimator, and the second step being a “sparsification”

procedure based on this robust pilot estimator, which results

in a (positive-definite) robust sparse covariance estimator. In

this two-step procedure, robustness and sparsity are considered

separately, which results in an accumulated statistical error.

1Here we refer to the pilot estimator as a tail-robust estimator that achieves
a certain deviation bound in ℓ∞-norm or spectral norm, which follows the
terminology in [29].

However, a direct combination of the two steps remains to be

explored, which, as we anticipated, turns out to be a one-step

estimator that jointly considers robustness and sparsity, enjoys

an optimal performance theoretically, and excels among other

methods numerically.

A. Contributions

In this paper, we investigate the robust sparse covariance esti-

mation problem in the high-dimensional regime. In existing lit-

erature, all tail-robust sparse covariance estimation procedures

proceed in two separate steps bridged by an intermediate pilot

estimator. In this paper, we will combine the two separate steps

into a single-step Huber-loss ℓ1-penalized sparse covariance

estimator. We will refer to it as the regularized Huber’s-M

estimator. The main contributions of this paper are summarized

as follows:

• We propose the regularized Huber’s-M estimator for

robust sparse covariance estimation problem. By using

pairwise-difference approach in the loss function, the

proposed covariance estimation method not only avoids

a separate estimation of the population mean, but also

exploits the sample data more efficiently, which is espe-

cially beneficial in the high-dimensional regime.

• We clearly demonstrate the statistical properties for the

proposed estimator: Assuming only a finite fourth mo-

ment for the data distribution, our estimator achieves

the minimax optimal rate under both ℓ1 norm and the

Frobenius norm. In comparison, the multi-stage sparse

covariance estimator proposed by [41] overcomes heavy-

tailed high-dimensional data and achieves the minimax

optimal statistical rate as our’s does, but their result

hinges on an additional elliptical-shape assumption that is

only known to hold for pair-elliptically distributed data.

• The performance of our proposed estimator is compared

with other methods, which validates the superiority of our

estimator over existing methods and supports the theory

on its statistical rate.

B. Organization

The rest of the paper is organized as follows. In Section III,

we introduce the pairwise-difference approach and explain our

formulation for the robust sparse covariance matrix estimation

problem. In Section V and VI, we present theoretical results,

including the statistical convergence rates of the proposed

estimator under ℓ1 norm and Frobenius norm. In Section VII,

we will evident via simulation that the proposed estimator

excels among other methods. We conclude by discussions in

Section VIII. The proofs of all theoretical results are given in

the Appendix.

C. Notation

The following notation is adopted. Standard lower-case or

upper-case letters stand for scalars and boldface lower-case

(upper-case) letters denote vectors (matrices). Both Xij and
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[X]ij denote the (i, j)-th entry of the matrix X. R+ denotes

the set of non-negative real numbers, Rm×n denotes the set of

real m×n matrices. 0 and 1 stand for the all-zero and all-one

vector/matrix, respectively. I stands for the identity matrix.

X ≻ 0 (X � 0) means X is positive definite (semidefinite).

x ≥ 0 denotes each element of x is non-negative.

Let ‖X‖F =
√∑

ij X
2
ij and ‖X‖1 =

∑
ij |Xij | denote

Frobenius norm and the ℓ1 norm, respectively. Let ‖X‖∞ =
maxk,l |Xkl| denote the ℓ∞ norm and ‖X‖1,off =

∑
k 6=l |Xkl|

denote the sum-absolute-value norm for all entries and for off-

diagonals. We write [d] for the set {1, 2, . . . , d} and ⌊x⌋ for

the largest integer not exceeding x. For an index set S, we

use |S| to denote its cardinality, S to denote its complement.

Use XS to denote the matrix whose (i, j)-th entry is equal to

Xij if (i, j) ∈ S, and zero otherwise. Let ∂f(·) denote the

subgradient of a function f .

Let sign(x) denote the sign of variable x, i.e., sign(x) = x/ |x|
for x 6= 0 and sign(0) = 0. For functions f(n) and g(n), we

denote f(n) > g(n) or f(n) = O(g(n)) if f(n) ≤ Cg(n),
f(n) ? g(n) or f(n) = Ω(g(n)) if f(n) ≥ cg(n), and denote

f(n) ≍ g(n) if cg(n) ≤ f(n) ≤ Cg(n) for some positive

absolute constants c and C.

Let E [x] and Var (x) denote the expectation and variance

of a random variable x, respectively. Let Pr (E) denote the

probability of a random event E .

II. PRIOR ART: NON-ROBUST COVARIANCE ESTIMATION

A. Covariance fitting loss

Let xi, i = 1, . . . , n be samples of a d-dimensional random

variable x. The sample covariance matrix S is computed as

S =
1

n− 1

n∑

i=1

(xi −m)(xi −m)T

with m = 1
n

∑n
i=1 xi being the sample mean. In the literature,

a common approach for covariance matrix estimation is based

on the regularized least squares method [1], [16]–[18]

l2(Σ) :=
1

2
‖S−Σ‖2F + λ ‖Σ‖1,off . (1)

where sample covariance matrix S serves as a pilot estimator.

However, this formulation is non-robust [21]. The reason

behind can be explained in the following subsection.

B. A mean vector estimation interpretation

Suppose

xi = µ+ ei

where µ is the unknown mean.

Let N := n(n− 1)/2 and define the paired data

{y1,y2, . . . ,yN} = {xi − xj}1≤i<j≤n ,

and consider

1

2
yiy

T
i =

1

2
(ei − ej) (ei − ej)

T

=
1

2

(
eie

T
i + eje

T
j

)
− 1

2

(
eje

T
i + eie

T
j

)

= Σ
∗ +Ei

where Ei =
1
2

(
eie

T
i + eje

T
j

)
−Σ

∗ − 1
2

(
eje

T
i + eie

T
j

)
. The

pairwise difference approach can get rid off the estimation of

the mean µ.

When x is assumed to follow a sub-Gaussian distribution,

the elements of Ei follow a light-tailed distribution. This is

because the product of subgaussian random variables ei and

ej ( i.e. eie
T
i or eie

T
j ) follow a light-tailed distribution (see

Lemma 2.7.7 in [43]), and as a summation of such prod-

ucts, Ei follows a light-tailed distribution as well. Therefore,

based on a mean vector estimation perspective and applying

a squared loss function for elements of Ei, we obtain the

following loss function:

1

2N

N∑

i=1

d∑

k,l=1

(Σkl −
1

2
yikyil)

2

Then, we have

1

2N

N∑

i=1

d∑

k,l=1

(Σkl −
1

2
yikyil)

2

=
1

2N

N∑

i=1

∥∥∥∥Σ− 1

2
yiy

T
i

∥∥∥∥
2

F

=
1

2

(
〈Σ,Σ〉 − 2

〈
Σ,

1

2N

N∑

i=1

yiy
T
i

〉

+
1

N

N∑

i=1

〈
1

2
yiy

T
i ,

1

2
yiy

T
i

〉)

=
1

2

(
〈Σ,Σ〉 − 2 〈Σ,S〉+ 1

N

N∑

i=1

〈
1

2
yiy

T
i ,

1

2
yiy

T
i

〉)

=
1

2
‖Σ− S‖2F +

1

2

(
−〈S,S〉+ 1

N

N∑

i=1

〈
1

2
yiy

T
i ,

1

2
yiy

T
i

〉)

︸ ︷︷ ︸
=const.

where in the third line we have used the relation S =
1
2N

∑N
i=1 yiy

T
i (see the proof in the Appendix).

The above mathematical derivation reveals the classically

applied least squares method is based on the squared loss

for the error term Ei. It is generally acknowledged that the

regularized least squares method is efficient only when the

error follows a light-tailed distribution [32].

III. PROBLEM FORMULATION

When ei is heavy-tailed with a finite fourth moment, Ei

will also be heavy-tailed in general, and with a finite second

moment. Following the perspective of [23] and applying a

Huber loss function for elements of Ei, we propose to use the

following robust loss function:

Lα(Σ) :=
∑

k,ℓ

1

N

N∑

i=1

ρα(Σkℓ − yikyiℓ/2), (2)

with ρα : R → R+ a Huber loss function defined as

ρα(x) =

{
x2/2 if |x| ≤ α

α |x| − α2/2 if |x| > α
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for some non-negative robustification parameter α. Based on

Lα(Σ), [21] proposed a Huber’s M-estimator for covariance:

Σ̂
H

= argmin
Σ∈R

Lα(Σ). (3)

When α → ∞, the Huber loss in (2) becomes the squared

loss, and

Σ̂
H

= argmin
Σ∈R

∑

k,ℓ

1

2N

N∑

i=1

(Σkℓ − yikyiℓ/2)
2

which has a closed-form solution that matches the sample

covariance

Σ̂
H

=
1

2N

N∑

i=1

yiy
T
i

=
1

2N

∑

1≤i<j≤n

(xi − xj)(xi − xj)
T = S.

The sample covariance is not robust. To trade off bias against

robustness, we need to carefully select the robustification

parameter α [31]. Taking α ≍
√
n/ log d, it can be shown

that

∥∥∥Σ̂
H −Σ

∗
∥∥∥
∞

>
√
log d/n with high probability, which

is optimal under ℓ∞ norm [21]. Nevertheless, Σ̂
H

is generally

not a sparse estimation when Σ
∗ is sparse.

A. The proposed estimator

Rather than applying thresholding to Σ̂
H

, we propose to

induce sparsity by directly adding an ℓ1 penalty to (3), that is,

Σ̂ ∈ argmin
Σ

{
Lα(Σ) + λ ‖Σ‖1,off

}
. (4)

To further obtain positive-definiteness, we propose to add a

log-determinant barrier function to (4), which results in the

following estimator:

Σ̂
+ ∈ argmin

Σ

{
Lα(Σ)− τ log detΣ+ λ ‖Σ‖1,off

}
, (5)

where τ > 0 is the barrier parameter and log detΣ is defined

to be negative infinity for Σ not positive definite. The log-

determinant barrier term ensures the existence of a positive

definite solution [16]. We will demonstrate that Σ̂
+

retains the

desirable properties of Σ̂, including robustness, sparsity, and

minimax optimality in the statistical rate.

Remark 1. In the literature, another popular robust estimation

method is to replace the pilot estimator in (1) by a robust

covariance estimator. (1) However, compared with our method,

this is a two-step method. It can be computationally expensive

and engenders an accumulated estimation error [21]. (2) they

need to estimate the mean but we get rid of this mean

estimation step.

IV. COMPUTATIONAL ALGORITHM

A. A convex ADMM algorithm

Recall that log detΣ is defined to be negative infinity for

Σ not positive definite. We want to optimize the following

problem:

minimize
Σ





1

N

N∑

j=1

ρα(Σ−Rj)− τ log detΣ+ λ ‖Σ‖1,off




(6)

where ρα(Σ − Rj) =
∑

k,ℓ ρα(Σkℓ − Rjkl). Given that the

Huber loss is not strongly convex, simply applying a projected

sub-gradient algorithm to problem (6) results in an O(1/
√
K)

convergence rate after K iterations, which is computationally

inefficient.

To alleviate the difficulty caused by the Huber loss function,

a feasible way is to introduce a Majorization-Minimization

(MM) framework, which replaces ρα with a quadratic upper

bound in each iteration. To be more specific, given the ith
update Σ

i, the quadratic upper bound can be defined as

hj

(
Σ
∣∣Σi

)
=
∥∥Σ−Σ

i +∇ρα
(
Σ

i −Rj

)∥∥2
F
/2

It can be seen that ∇ρα
(
Σ

i −Rj

)
= ∇hj

(
Σ

i
∣∣Σi

)
, and

ρα(Σ − Rj) ≤ hj

(
Σ
∣∣Σi

)
for all σ ∈ R. Applying this

upper bound to each and every term in (6), we obtain

Σ
i+1 = min

Σ

{
1

2

∥∥∥Σ− R̃

∥∥∥
2

F
− τ log detΣ+ λ ‖Σ‖1,off

}

(7)

where R̃ = Σ
i − 1

N

∑N
j=1

[
∇ρα

(
Σ

i −Rj

)]
. In each itera-

tion, problem (7) can be solved using an algorithm proposed

by Rothman [16].

Before the first iteration, we initialize Σ
0 = I for simplicity.

The MM algorithm for solving (6) is summarized in Algorithm

1.

Algorithm 1: The MM algorithm for solving (8).

Input: {Rj}Nj=1, τ , λ;

1 Initialize Σ
0 = I , i = 0;

2 repeat

3 update R̃ = Σ
i − 1

N

∑N
j=1

[
∇ρα

(
Σ

i −Rj

)]
;

4 obtain Σ
i+1 by solving 7 with Rothman’s algorithm;

5 i = i+ 1;

6 until convergence;

Output: Σi.

However, Rothman’s algorithm does not have a theoretical

guarantee for its convergence rate.

We propose to use the alternating direction method of mul-

tipliers (ADMM) to solve this problem. We first introduce a

new variable Ω and an equality constraint as follows:

minimize
Σ,Ω,Σ=Ω





1

N

N∑

j=1

ρα(Σ−Rj)− τ log detΩ+ λ ‖Σ‖1,off




(8)
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The solution to (8) gives the solution to (6). To deal with the

constraint Σ = Ω in (8), consider the augmented Lagrangian

function for some given penalty parameter ρ:

L (Σ,Ω,Y )

=
1

N

N∑

j=1

ρα(Σ−Rj)− τ log detΩ+ λ ‖Σ‖1,off

+ 〈Y ,Σ−Ω〉+ ρ

2
‖Σ−Ω‖2F ,

where Y is the Lagrange multiplier. In each iteration, we

sequentially update Σ
i+1, Ωi+1 and Y i+1 as follows

Σ
i+1 = argmin

Σ

L
(
Σ,Ωi,Y i

)

= argmin
Σ

1

N

N∑

j=1

ρα(Σ−Rj) + λ ‖Σ‖1,off

+
〈
Y i,Σ−Ω

i
〉
+

ρ

2

∥∥Σ−Ω
i
∥∥2
F

Ω
i+1 = argmin

Ω

L
(
Σ

i+1,Ω,Y i
)

= argmin
Ω

ρ

2

∥∥Σi+1 −Ω
∥∥2
F
+
〈
Y i,Σi+1 −Ω

〉

− τ log detΩ

= argmin
Ω≻0

ρ

2

∥∥∥∥Σ
i+1 +

1

ρ
Y i −Ω

∥∥∥∥
2

F

− τ log detΩ

Y i+1 = Y i +
1

ρ

(
Σ

i+1 −Ω
i+1
)
.

When updating Σ
i+1, the objective function is separable, and

for each (k, l), the entry Σi+1
kl can be obtained separately as a

solution to the following equation:

1

N

N∑

j=1

ρ′α(Σ
i+1
kl −Rjkl) + I(k 6= l) · λξ

+Y i
kl + ρΣi+1

kl − ρΩi
kl = 0, ξ ∈ ∂

∣∣Σi+1
kl

∣∣ ,
(9)

which can be easily computed using the bisection method that

converges linearly. Also note that the above update can be

parallelized when necessary.

To update Ω
i+1, consider the spectral decomposition of

Σ
i+1 + 1

ρY
i. That is, Σi+1 + 1

ρY
i = UEUT , where

E =




e1
. . .

ed


 ,

then the update for Ωi+1 can be written as

Ω
i+1 = UE′U

T
(10)

where

E′ =




φ (e1)
. . .

φ (ed)


 ,

with φ(x) :=

√

x2+ 4τ
ρ
+x

2 .

Before the first iteration, we initialize Ω
0 = I and Y 0 = 0

for simplicity. The ADMM algorithm for solving (8) is sum-

marized in Algorithm 2.

Algorithm 2: The ADMM algorithm for solving (8).

Input: {Rj}Nj=1, τ , λ, ρ;

1 Initialize Ω
0 = I , Y 0 = 0, i = 0;

2 repeat

3 obtain Σ
i+1 by solving 9;

4 obtain Ω
i+1 using (10);

5 update Y i+1 = Y i + 1
ρ

(
Σ

i+1 −Ω
i+1
)
;

6 i = i+ 1;

7 until convergence;

Output: Ωi.

As illustrated in [44], with K iterations, this algorithm enjoys

an O(1/K) convergence rate, which is significantly faster than

the projected sub-gradient algorithm.
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B. A convex BMM algorithm

V. MAIN RESULTS

In this section, we first introduce some necessary technical

assumptions for the theoretical analysis, then establish the sta-

tistical convergence rates of the proposed covariance estimator

under both ℓ1 and Frobenius norm.

A. Assumptions

We denote the true covariance matrix by Σ
∗. Let S = {(i, j) |

Σ∗
ij 6= 0} be the support set of Σ∗ and s be its cardinality, i.e.,

s = |S|. In the following, we impose some mild conditions

on the distribution of the i.i.d. observations xi, i = 1, . . . , n
and the structure of true covariance matrix Σ

∗.

Assumption 2 (fourth moment assumption). xi ∈ Rd is a

heavy-tailed random vector such that E
[
|xik − E [xik]|4

]
≤

σ2 for all 1 ≤ k ≤ d with some positive constant σ, which

implies that there exists K > 0 depending only on σ, such

that Var ((xik − xjk)(xil − xjl)/2) ≤ K for all k, l ∈ [d] and

i 6= j.

Remark 3. E

[
|xik − E [xik]|4

]
≤ σ2 implies that the fourth

moment of the paired data {xi − xj}1≤i<j≤n is also bounded,

i.e. E
[
(xik − xjk)

4
]
≤ 4K with a constant K > 0 depending

on σ. Hence for all k, l ∈ [d], we have

Var ((xik − xjk)(xil − xjl)/2)

= − (Σ∗
kl)

2
+ E

[
(xik − xjk)

2(xil − xjl)
2
]
/4 ≤ K.

Also note that a scaling scheme of K with respect to d is

implicitly assumed. In other words, K might also depend on

d.

The fourth moment assumption in Assumption 2 is typical for

the study of tail-robust covariance estimation, which is adopted

in [4], [15], [21], [29].

Assumption 4 (positive-definiteness). The true covariance

matrix satisfies Σ
∗ ≻ 0.

The assumption on positive-definiteness is standard in existing

literature on large covariance estimation problems. [16]–[18].

To analyze the statistical properties of the proposed estimator,

we first define a “good” event regarding the local strong

convexity of the empirical Huber loss over a local ℓ∞ ball:

Definition 5. Given B∞(r) :=
{
∆ ∈ Rd×d : ‖∆‖∞ ≤ r

}
,

define E1(r, κ) as the following event: For all Σ1,Σ2 ∈
Σ

∗ + B∞(r),

〈∇Lα(Σ1)−∇Lα(Σ2),Σ1 −Σ2〉 ≥ κ ‖Σ1 −Σ2‖2F .

In the next subsection, we will show that the Huber-based

loss function Lα(Σ) is locally strongly convex i.e. the above

event holds in an ℓ∞ neighborhood of Σ
∗. By comparison,

the squared loss is globally strongly convex, which makes it

a lot easier to analysis than the Huber-based loss function.

B. Statistical Theory

Our theoretical results on the convergence rates will be pro-

vided in this section. We first provide a deterministic version

of our convergence theorem in the following Proposition.

Proposition 6. Assume α > 6λs1/2 and condition on the event

E1(α/2, 1/2)∩
{
‖∇Lα(Σ

∗)‖∞ + τ
∥∥∥(Σ∗)

−1
∥∥∥
∞

≤ λ/2
}

, we

have
∥∥∥Σ̂

+ −Σ
∗
∥∥∥

F
≤ 3λs1/2 and

∥∥∥Σ̂
+ −Σ

∗
∥∥∥

1
≤ 12λs.

Proposition 6 gives the deterministic version of our con-

vergence theorem. In particular, it demonstrates rate under

Frobenius norm and ℓ1 norm. In the following discussions we

will analyze the probabilities of the condition E1(α/2, 1/2)
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and the condition ‖∇Lα(Σ
∗)‖∞ + τ

∥∥∥(Σ∗)
−1
∥∥∥
∞

≤ λ/2,

respectively.

Strong convexity is important for the study of M-estimators.

However, in our formulation (5), the Huber loss is not globally

strongly convex. Therefore, we need to characterize the local

strong convexity within an ℓ∞ neighborhood of Σ
∗ with the

following Proposition.

Proposition 7 (local strong convexity). Suppose that As-

sumption 2 holds. Assume α ≍
√
Kn/ log d. Then, for any

κ ∈ (0, 1), with n ? log d,

〈∇Lα(Σ1)−∇Lα(Σ2),Σ1 −Σ2〉 ≥ κ ‖Σ1 −Σ2‖2F
holds uniformly for all Σ1,Σ2 ∈ Σ

∗+B∞(α/2) with at least

1− 2/d probability.

Proposition 7 implies that event E1 (α/2, κ) happens with

high probability. In the following Lemma, we will analyze

the probability of the second condition ‖∇Lα(Σ
∗)‖∞ +

τ
∥∥∥(Σ∗)

−1
∥∥∥
∞

≤ λ/2.

Lemma 8. Suppose that Assumption 2 hold. Then,

‖∇Lα(Σ
∗)‖∞ ≤

√
12K log d/n+ 4α log d/n+K/α (11)

holds with at least 1− 2/d probability.

Further, let α ≍
√
Kn/ log d, τ >

√
K log d/n·

∥∥∥(Σ∗)
−1
∥∥∥
−1

∞

and take λ ≍
√
K log d/n. Then,

‖∇Lα(Σ
∗)‖∞ + τ

∥∥∥(Σ∗)
−1
∥∥∥
∞

≤ λ/2

holds with at least 1− 2/d probability.

Now we present our statistical theory for the proposed estima-

tor. We will study the error bounds under Frobenius norm and

ℓ1 norm, which match the minimax optimal rates for sparse

covariance estimation [45], [46].

Theorem 9 (minimax-optimal rates). Suppose that Assump-

tions 2 and 4 hold. Let α ≍
√
Kn/ log d, τ >

√
K log d/n ·∥∥∥(Σ∗)

−1
∥∥∥
−1

∞
and take λ ≍

√
K log d/n. If the sample size

satisfies n ? s1/2 log d, then

∥∥∥Σ̂
+ −Σ

∗
∥∥∥

F
>

√
Ks log d

n

and

∥∥∥Σ̂
+ −Σ

∗
∥∥∥
1
> s

√
K log d

n

hold with at least 1− 4/d probability.

In comparison, under the Frobenius norm, the multi-stage

sparse covariance estimator proposed by [41] achieves the

minimax optimal statistical rate as our’s does, but in addition to

the fourth moment assumption (i.e. Assumption 2), their result

hinges on an elliptical-shape condition that is only known to

hold for pair-elliptically distributed data. In the rest of the

literature, the Frobenius norm bound is barely discussed, even

in some papers that have proposed important methodologies

for robust sparse covariance estimation [29]. We are also the

first to include deviation analysis for robust sparse covariance

estimators under ℓ1 norm, and our deviation bound matches

the minimax rate in [45].

VI. A CONSTRAINED ROBUST COVARIANCE ESTIMATOR

In existing literature, there are two ways of achieving positive-

definiteness. One is to add a log-determinant barrier term,

which is studied in the previous section. The other one is to

add an eigenvalue constraint as illustrated in [18]. Similarly,

for robust covariance estimation, consider adding the eigen-

value constraint to 4, and we obtain the following estimator:

Σ̂ǫ ∈ arg min
Σ�ǫI

{
Lα(Σ) + λ ‖Σ‖1,off

}
, (12)

where ǫ ≥ 0 lower bounds the minimum singular value of Σ̂ǫ.

Now we present our statistical theory for Σ̂ǫ.

Theorem 10. Suppose that Assumptions 2 and 4 hold. Let

α ≍
√
Kn/ log d and take λ ≍

√
K log d/n. If ǫ is smaller

than the minimum singular value of Σ∗ and the sample size

satisfies n ?
√
s log d, then there is a unique minimizer for

problem (12). Let Σ̂ǫ denote this minimizer, then

∥∥∥Σ̂ǫ −Σ
∗
∥∥∥

F
>

√
Ks log d

n

and

∥∥∥Σ̂ǫ −Σ
∗
∥∥∥
1
> s

√
K log d

n

hold simultaneously with at least 1− 4/d probability.

The constrained robust covariance estimator Σ̂ǫ is inherently

related to our proposed Σ̂
+

: Roughly speaking, Σ̂ǫ can be

viewed as the limit of Σ̂
+

for parameter τ → 0 in (5).

Although Σ̂ǫ is constructed to guarantee positive-definiteness

from a different angle, it can be seen from Theorem 10 that

the statistical properties for Σ̂ǫ are actually the same as Σ̂
+

.

VII. NUMERICAL SIMULATION

In this section, we will study the empirical performance of

both the two-step robust sparse covariance estimators and the

one-step estimators, which includes the proposed estimator

Σ̂
+

. For the two-step estimators, the first step is a robus-

tification procedure that results in a robust pilot estimator,

and the second step is a thresholding procedure that induces

sparsity. To be specific, let Σ̂α denote the robust pilot esti-

mator in a two-step estimator, where α is the robustification

parameter. Let Γ̂θ(·) denote the thresholding operator with

parameter(s) θ that acts on Σ̂α and produces the final estimator

Σ̂
f
= Γ̂θ(Σ̂α). One example of the thresholding operator can

be the positive-definite ℓ1-penalized projection operator, which

is defined as

Γ̂λ,τ (Ω) = argmin
Σ

1

2
‖Σ−Ω‖2F − τ log detΣ+ λ ‖Σ‖1,off

(13)

It is clear for the example in (13) that, given (λ, τ) = (0, 0),
we have Γ̂0,0(Σ̂α) = Σ̂α; Other examples include the

hard/soft thresholding operators, where Γ̂0(Σ̂α) = Σ̂α always



8

hold. In general, we can assume that Γ̂θ(Ω) is reasonably

designed such that the gap between Ω and Γ̂θ(Ω) vanishes

when θ = 0.

In existing literature, the tuning of two-step estimators is also

broken down into two steps, where the first step is to tune

the robustification parameters that dominates the behavior of

the robust pilot estimator, and the second step is to tune the

thresholding parameter λ that controls the sparsity in the final

estimator [4], [29]. Other parameters of Γ̂θ(·), like τ in (13),

are set to be some sufficiently small number. We will follow

this selection of τ = 10−6 [16].

Here is an example of the tuning of a two-step estimator

using a V -fold Cross Validation (CV): Assuming we are

tuning this estimator for a d dimensional dataset with n
samples. In the first step, assume that the data follows some

given distribution like a t-distribution with five degrees of

freedom, and conservatively select α∗
1 and α∗

2 to optimize the

performance of Σ̂α [29] when there are
(V−1)n

V samples and
n
V samples, respectively. In the second step, select λ by a

V -fold Cross Validation in the following sense:

λ∗ =argmin
λ≥0

1

V

V∑

v=1

∥∥∥∥Γ̂λ,τ (Σ̂
(−v)

α∗

1

)− Σ̂
(v)

α∗

2

∥∥∥∥
2

F

=argmin
λ≥0

1

V

V∑

v=1

∥∥∥∥Γ̂λ,τ (Σ̂
(−v)

α∗

1

)− Γ̂0,0(Σ̂
(v)

α∗

2

)

∥∥∥∥
2

F

(14)

where Σ̂
(v)

α∗

2

denotes the robust pilot estimator based on

samples in the v’th fold, which includes n
V samples, and

Σ̂
(−v)

α∗

1

denotes the robust pilot estimator based on the samples

excluding the v’th fold, which includes
(V −1)n

V samples.

The tuning of one-step estimators, however, cannot be nat-

urally separated into two steps. Hence it is not clear how

to select parameters for one-step estimators with the above

method for two-step estimators. Therefore, we propose the

following tuning scheme for those estimators: Let Σ̂α,λ,τ

denote any one-step robust sparse covariance estimator. In

the first step, we conservatively assume that the data follows

some given distribution like a t-distribution with five degrees

of freedom, and select α∗
1 and α∗

2 to optimize the performance

of Σ̂α,0,0 in this scenario. That is, letting λ = τ = 0 in Σ̂α,λ,τ ,

then focus on the tuning of α. In the second step, we select

λ by a V-fold Cross Validation (CV) in the following sense:

λ∗ =argmin
λ≥0

1

V

V∑

v=1

∥∥∥∥Σ̂
(−v)

α∗

1
,λ,τ − Σ̂

(v)

α∗

2
,0,0

∥∥∥∥
2

F

. (15)

where τ = 10−6 is fixed as we mentioned earlier. This method

is a generalization to the tuning of two-step estimators: If we

ignore the two-step structure in (14) and substitute Γ̂λ,τ (Σ̂α∗

i
)

with Σ̂α∗

i
,λ,τ , i = 1, 2, then it coincides with the proposed

tuning scheme.

We will mostly consider the two-step robust sparse convari-

ance estimators, which includes the quantile-based estimator

in [41], denoted as Σ̂
Q

; the adaptive Huber’s M-estimator

proposed in [29], denoted as Σ̂
M

; and the Huber’s M-estimator

utilizing pairwise-difference approach in the robustification

step (3) as well as Γ̂λ,τ (·) in the thresholding step, denoted

as Σ̂
P
:= Γ̂λ,τ (Σ̂

H
). Our proposed estimator (5) is the only

one-step robust sparse covariance estimator so far, denoted

as Σ̂
+

. The robustification parameters for all estimators are

conservatively chosen to be those that would be optimal if

the true distribution is a t distribution with five degrees of

freedom. And the thresholding parameter λ is selected using

(15).

We will compare the performance of Σ̂
Q

and Σ̂
M

with

Σ̂
+

because they are benchmark estimators for robust sparse

covariance estimation. The reason we compare Σ̂
P

with the

proposed estimator Σ̂
+

here is that, we want to rule out the

effect of pairwise-difference approach, just to find out exactly

how much difference can be made when we switch from a

two-step estimator to a one-step estimator.
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Table I
QUANTITATIVE COMPARISON AMONG SEVEN DIFFERENT METHODS FOR THE BANDED SETTING

Robust Robust sparse

SCM MoM? Junwei Lu Avella-Medina PairwiseHuber_thresholding
HuberL1

(prop.)
PDHuberL1

(prop.)

d = 100, n = 50

‖ · ‖F
48.8570

(642.1970)
31.9230

(85.6455)
16.0938
(2.2311)

14.4988
(0.8741)

13.9719
(1.3823)

13.7575
(0.8593)

0
(0)

‖ · ‖2
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)

FPR NA NA
0.1900

(0.0078)
0.1737

(0.0015)
0.1679

(0.0017)
0.1726

(0.0008)
0

(0)

TPR NA NA
0.7871

(0.0037)
0.8038

(0.0013)
0.8137

(0.0012)
0.8217

(0.0009)
0

(0)
PD 0/100 0/100 100/100 0/100 91/100 86/100 0/0
Time – – – – – – –

d = 200, n = 50

‖ · ‖F
‖ · ‖2
FPR

TPR

PD 0/100 2/100 15/100 0/100 0/100
Time – – – – –

Table II
QUANTITATIVE COMPARISON AMONG SEVEN DIFFERENT METHODS FOR THE BANDED SETTING

Robust Robust sparse

SCM MoM? Junwei Lu Avella-Medina PairwiseHuber_thresholding
HuberL1

(prop.)
PDHuberL1

(prop.)

d = 100, n = 50

‖ · ‖F
48.8570

(642.1970)
31.9230

(85.6455)
16.0938
(2.2311)

14.4988
(0.8741)

13.9719
(1.3823)

13.7575
(0.8593)

0
(0)

‖ · ‖2
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)

FPR NA NA
0.1900

(0.0078)
0.1737

(0.0015)
0.1679

(0.0017)
0.1726

(0.0008)
0

(0)

TPR NA NA
0.7871

(0.0037)
0.8038

(0.0013)
0.8137

(0.0012)
0.8217

(0.0009)
0

(0)
PD 0/100 0/100 100/100 0/100 91/100 86/100 0/0
Time – – – – – – –

d = 200, n = 50

‖ · ‖F
‖ · ‖2
FPR

TPR

PD 0/100 2/100 15/100 0/100 0/100
Time – – – – –
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VIII. CONCLUSION

XX

XX

XX

XX

XX

APPENDIX A

PROOFS OF STATISTICAL THEORY

In this appendix, we first provide some necessary technical

lemmata, and then provide the proofs of all the statistical

theoretical results in Section V and Section VI.

A. Technical Lemmata

In this subsection, we derive some technical lemmata by

considering

Σ̃ ∈ arg min
Σ≻ǫI

{
Lα(Σ)− τ log det (Σ− ǫI) + λ ‖Σ‖1,off

}
,

(16)

where ǫ ≥ 0 lower bounds the minimal singular value of the

final estimation Σ̃. This definition is a slight generalization of

Problem (5).

Lemma 11. For any positive-definite Σ ∈ Rd×d satisfying

ΣS = 0, provided Σ ≻ ǫI and λ > ‖∇Lα(Σ)‖∞ +

τ
∥∥∥(Σ− ǫI)−1

∥∥∥
∞

, we have

∥∥∥(Σ̃−Σ)S

∥∥∥
1

≤
(
λ− ‖∇Lα(Σ)‖∞ − τ

∥∥∥(Σ− ǫI)
−1
∥∥∥
∞

)−1

·
(
λ+ ‖∇Lα(Σ)‖∞ + τ

∥∥∥(Σ− ǫI)−1
∥∥∥
∞

)∥∥∥(Σ̃−Σ)S

∥∥∥
1

Proof: Let f(Σ) := Lα(Σ) − τ log det (Σ− ǫI). For Ξ ∈
∂
∥∥∥Σ̃
∥∥∥
1,off

, define

U(Ξ) = ∇f(Σ̃) + λΞ ∈ R
d×d.

Optimality condition of (5) implies infΞ U(Ξ) = 0. By

convexity of f(Σ):

〈∇f(Σ̃)−∇f(Σ), Σ̃−Σ〉 ≥ 0.

Therefore,

‖U(Ξ)‖∞
∥∥∥Σ̃−Σ

∥∥∥
1

≥〈U (Ξ), Σ̃−Σ〉
=〈∇f(Σ̃)−∇f(Σ), Σ̃−Σ〉
+ 〈∇f(Σ), Σ̃−Σ〉+ 〈λΞ, Σ̃−Σ〉

≥0− ‖∇f(Σ)‖∞
∥∥∥Σ̃−Σ

∥∥∥
1
+ 〈λΞ, Σ̃−Σ〉

Moreover, we have

〈λΞ, Σ̃−Σ〉
=λ〈ΞS , (Σ̃−Σ)S〉+ λ〈ΞS , (Σ̃−Σ)S〉
≥λ
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− λ

∥∥∥(Σ̃−Σ)S

∥∥∥
1,off

Together, the last two displays imply

‖U(Ξ)‖∞
∥∥∥Σ̃−Σ

∥∥∥
1

≥− ‖∇f(Σ)‖∞
∥∥∥(Σ̃−Σ)S

∥∥∥
1

+ λ
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− λ

∥∥∥(Σ̃−Σ)S

∥∥∥
1

Since the right-hand side of this inequality does not depend

on Ξ, taking the infimum with respect to Ξ ∈ ∂
∥∥∥Σ̃
∥∥∥
1,off

on

both sides to reach

0 ≥− ‖∇f(Σ)‖∞
∥∥∥Σ̃−Σ

∥∥∥
1

+ λ
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− λ

∥∥∥(Σ̃−Σ)S

∥∥∥
1
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Decompose

∥∥∥Σ̃−Σ

∥∥∥
1

as

∥∥∥(Σ̃−Σ)S

∥∥∥
1
+
∥∥∥(Σ̃−Σ)S

∥∥∥
1
, the

stated result follows immediately.

Lemma 12. Let Σ
∗ ≻ ǫI . Assume ‖∇Lα(Σ

∗)‖∞ +

τ
∥∥∥(Σ∗ − ǫI)

−1
∥∥∥
∞

≤ λ/2, then any solution Σ̃ to (5) satisfies

Σ̃ ∈ Σ
∗ + C(4s1/2), with

C(l) :=
{
∆ ∈ R

d×d : ‖∆‖1 ≤ l‖∆‖F

}
.

Moreover, assume Cα > (3/2) · κ−1λs1/2 for constant C.

Then, condition on the event

E1 (Cα, κ)∩
{
‖∇Lα(Σ

∗)‖∞ + τ
∥∥∥(Σ∗ − ǫI)

−1
∥∥∥
∞

≤ λ/2
}
,

(17)

we have

∥∥∥Σ̃−Σ
∗
∥∥∥

F
≤ κ−1

{
λs1/2 + ‖∇Lα(Σ

∗)S‖F

+τ
∥∥∥
(
(Σ∗ − ǫI)

−1
)
S

∥∥∥
F

}

≤ (3/2) · κ−1λs1/2.

Proof: Condition on the stated event, Lemma 11 indicates∥∥∥(Σ̃−Σ
∗)S

∥∥∥
1
≤ 3

∥∥∥(Σ̃−Σ
∗)S

∥∥∥
1
.

Therefore, ∥∥∥Σ̃−Σ
∗
∥∥∥
1
≤ 4s1/2

∥∥∥Σ̃−Σ
∗
∥∥∥

F
,

that is, Σ̃ ∈ Σ
∗ + C(4s1/2).

Now we prove the second statement. Define η =

sup
{
u ∈ [0, 1] : (1 − u)Σ∗ + uΣ̃ ∈ B∞(Cα)

}
. Note that

η = 1 if Σ̃ ∈ Σ
∗ + B∞(Cα) and η ∈ (0, 1) otherwise.

Let Σ̃η := (1−η)Σ∗+ηΣ̃. Notice that if

∥∥∥Σ̃η −Σ
∗
∥∥∥
∞

< Cα,

then Σ̃η = Σ̃. By the convexity of Huber loss, we have

〈∇Lα(Σ̃η)−∇Lα(Σ
∗), Σ̃η −Σ

∗〉
≤ η〈∇Lα(Σ̃)−∇Lα(Σ

∗), Σ̃−Σ
∗〉 (18)

Since Σ̃η ∈ Σ
∗+B∞(Cα), and condition on event E1 (Cα, κ),

we have

〈∇Lα(Σ̃η)−∇Lα(Σ
∗), Σ̃η −Σ

∗〉 ≥ κ
∥∥∥Σ̃η −Σ

∗
∥∥∥
2

F
(19)

Write f(Σ) := Lα(Σ) − τ log det (Σ− ǫI). Now we upper

bound the right-hand side of (18). For Ξ ∈ ∂
∥∥∥Σ̃
∥∥∥
1,off

, write

〈∇Lα(Σ̃)−∇Lα(Σ
∗), Σ̃−Σ

∗〉
= 〈U(Ξ), Σ̃−Σ

∗〉︸ ︷︷ ︸
:=Π1

− 〈∇f(Σ∗), Σ̃−Σ
∗〉︸ ︷︷ ︸

:=Π2

− 〈λΞ, Σ̃−Σ
∗〉︸ ︷︷ ︸

:=Π3

− τ〈(Σ∗)
−1 − Σ̃

−1
, Σ̃−Σ

∗〉︸ ︷︷ ︸
≥0

(20)

where U(Ξ) := ∇f(Σ̃) + λΞ ∈ Rd×d. We have

|Π1| ≤ ‖(U(Ξ))S‖F

∥∥∥Σ̃−Σ
∗
∥∥∥

F
+ ‖U(Ξ)‖∞

∥∥∥(Σ̃−Σ
∗)S

∥∥∥
1

|Π2| ≤ ‖∇f(Σ∗)S‖F

∥∥∥Σ̃−Σ
∗
∥∥∥

F

+ ‖∇f(Σ∗)‖∞
∥∥∥(Σ̃−Σ

∗)S

∥∥∥
1
.

Turning to Π3, decompose λΞ and Σ̃−Σ
∗ according to S∪S

to reach

Π3 = 〈(λΞ)S , (Σ̃−Σ
∗)S〉+ 〈(λΞ)S , (Σ̃−Σ

∗)S〉

Since Σ
∗
S
= 0 and Ξ ∈ ∂

∥∥∥Σ̃
∥∥∥
1,off

, we have

〈(λΞ)S , (Σ̃−Σ
∗)S〉 = 〈(λΞ)S , Σ̃S〉

= λ
∥∥∥Σ̃S

∥∥∥
1
= λ

∥∥∥(Σ̃−Σ
∗)S

∥∥∥
1
.

Therefore,

Π3 ≥ λ
∥∥∥(Σ̃−Σ

∗)S

∥∥∥
1
− λs1/2

∥∥∥(Σ̃−Σ
∗)S

∥∥∥
F
.

Combining (20) with our estimation for Π1,Π2 and Π3, we

have

〈∇Lα(Σ̃)−∇Lα(Σ
∗), Σ̃−Σ

∗〉
≤ − {λ− ‖∇f(Σ∗)‖∞ − ‖U(Ξ)‖∞} ·

∥∥∥(Σ̃−Σ
∗)S

∥∥∥
1

+ ‖∇f(Σ∗)S‖F

∥∥∥Σ̃−Σ
∗
∥∥∥

F
+ ‖(U(Ξ))S‖F

∥∥∥Σ̃−Σ
∗
∥∥∥

F

+ λs1/2
∥∥∥Σ̃−Σ

∗
∥∥∥

F

Taking the infimum with respect to Ξ ∈ ∂
∥∥∥Σ̃
∥∥∥
1,off

on both

sides, it follows that

〈∇Lα(Σ̃)−∇Lα(Σ
∗), Σ̃−Σ

∗〉
≤
(
‖∇Lα(Σ

∗)‖∞ +
∥∥∥τ (Σ∗ − ǫI)

−1
∥∥∥
∞

− λ
) ∥∥∥(Σ̃−Σ

∗)S

∥∥∥
1

+ ‖∇f(Σ∗)S‖F ·
∥∥∥Σ̃−Σ

∗
∥∥∥

F
+ λs1/2

∥∥∥Σ̃−Σ
∗
∥∥∥

F
.

(21)

With Σ̃η −Σ
∗ = η(Σ̃ −Σ

∗), it follows from (18), (19) and

(21) that condition on the stated event (17),

κ
∥∥∥Σ̃η −Σ

∗
∥∥∥
2

F
≤

{
λs1/2 + ‖∇f(Σ∗)S‖F

}
·
∥∥∥Σ̃η −Σ

∗
∥∥∥

F
,

which implies that
∥∥∥Σ̃η −Σ

∗
∥∥∥

F

≤ κ−1

{
λs1/2 + ‖∇Lα(Σ

∗)S‖F + τ
∥∥∥
(
(Σ∗ − ǫI)

−1
)
S

∥∥∥
F

}

≤ κ−1{λs1/2 + 1

2
λs1/2} =

3

2
κ−1λs1/2 < Cα.

(22)

Since

∥∥∥Σ̃η −Σ
∗
∥∥∥
∞

≤
∥∥∥Σ̃η −Σ

∗
∥∥∥

F
< Cα, Σ̃η − Σ

∗ falls

in the interior of B∞(Cα). Hence Σ̃ − Σ
∗ = Σ̃η − Σ

∗ ∈
B∞(Cα). Consequently, (22) also holds for Σ̃−Σ

∗.

B. Proof of Proposition 6

Proof:

∥∥∥Σ̂
+ −Σ

∗
∥∥∥

F
≤ 3λs1/2 follows immediately from

Lemma 12 with ǫ = 0 and C = κ = 1/2. Combining this

with Σ̂
+ ∈ Σ

∗ + C(4s1/2), yields

∥∥∥Σ̂
+ −Σ

∗
∥∥∥

1
≤ 12λs.
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C. Proof of Proposition 7

Proof: Recall N = n(n − 1)/2. For fixed k, l ∈ [d] × [d], let

zi,j = (xik − xjk)(xil − xjl)/2 and define

Dkl =
1

N

∑

1≤i<j≤n

1 (|Σ∗
kl − zi,j | ≤ α/2) . (23)

By Chebyshev’s inequality,

E[Dkl] = Pr (|Σ∗
kl − zi,j | ≤ α/2) ≥ 1− 4K/α2 > (1+κ)/2.

The last inequality holds because 4K/α2 < (1− κ)/2, which

follows from α ≍
√
Kn/ logd and by taking n ? log d.

For each fixed k, l ∈ [d], let h(xi,xj) = 1(|Σ∗
kl − zi,j| ≤

α/2). Note that the right hand side of (23) is a U-statistic with

a bounded kernel of order two. With Hoeffding’s inequality for

U-statistics [47],

Pr

(
|Dkl − E[Dkl]| >

√
log(2/δ)

2 ⌊n/2⌋

)
≤ δ.

Taking δ = 2 · exp
(
−(1− κ)2n/4

)
yields

Pr

(
|Dkl − E[Dkl]| >

1− κ

2

)
≤ 2 · exp

(
−(1− κ)2n/4

)
.

Therefore, Dkl is concentrated around its mean, which implies

Pr {Dkl < κ}
≤Pr {|Dkl − E[Dkl]| ≥ (1 − κ)/2}
≤2 · exp

(
−(1− κ)2n/4

)
.

With union bound we have

Pr

[
min
k,l

Dkl < κ

]
≤ 2d2 · exp

(
−(1− κ)2n/4

)
< 2/d,

where the last inequality follows by taking n ≥ 12 log d/(1−
κ)2. Let Gkl := {(i, j) : i < j and |Σ∗

kl − zi,j | ≤ α/2}.

Under the event that mink,l Dkl ≥ κ,

1

N

∑

1≤i<j≤n

{ρ′α(Σ1,kl − zi,j)− ρ′α(Σ2,kl − zi,j)}

· (Σ1,kl − Σ2,kl)

≥ 1

N

∑

(i,j)∈Gkl

{ρ′α(Σ1,kl − zi,j)− ρ′α(Σ2,kl − zi,j)}

· (Σ1,kl − Σ2,kl)

=
1

N

∑

(i,j)∈Gkl

(Σ1,kl − Σ2,kl)
2

≥ κ(Σ1,kl − Σ2,kl)
2

The second last equality holds since Σ1,Σ2 ∈ B∞(α/2)
implies |Σ1,kl − zi,j | ≤ α/2 and |Σ2,kl − zi,j | ≤ α/2 for

(i, j) ∈ Gkl. The last inequality follows from |Gkl| /N = Dkl.

Therefore

〈∇Lα(Σ1)−∇Lα(Σ2),Σ1 −Σ2〉

=
∑

k,l

1

N

∑

1≤i<j≤n

{ρ′α(Σ1,kl − zi,j)− ρ′α(Σ2,kl − zi,j)}

· (Σ1,kl − Σ2,kl)

≥κ · ‖Σ1 −Σ2‖2F
with at least 1− 2/d probability.

D. Proof of Lemma 8

Proof: We adopt the following notations:

B
∗ :=E[∇Lα(Σ

∗)]

W
∗ :=∇Lα(Σ

∗)− E[∇Lα(Σ
∗)].

We first analyze B
∗. For each k, l ∈ [d], let ǫkl := Σ∗

kℓ −
yikyiℓ/2, then

|E[ρ′α(ǫkl)]| = |E[ǫklI(|ǫkl| ≤ α) + αsgn(ǫkl)I(|ǫkl| > α)]|
= |E[ǫkl + (αsign(ǫkl)− ǫkl)I(|ǫkl| > α)]|
= |E{[ǫkl − αsign(ǫkl)]I(|ǫkl| > α)}|
≤ |E[(|ǫkl| − αsign(ǫkl))I(|ǫkl| > α)]|

≤
∣∣E[(ǫ2kl − α2)I(|ǫkl| > α)]

∣∣
α

<
K

α
.

hence we have |(B∗)kl| = |E[ρ′α(Σ∗
kℓ − yikyiℓ/2)]| < K

α .

Next, we will analyze W
∗. By definition,

W ∗
kl =

1

N

∑

1≤i<j≤n

{ρ′α(Σ∗
kℓ − yikyiℓ/2)

−E [ρ′α(Σ
∗
kℓ − yikyiℓ/2)]} .

Given that |ρ′α(Σ∗
kℓ − yikyiℓ/2)| ≤ α, for all m ≥ 2:

E[ρ′α(Σ
∗
kℓ − yikyiℓ/2)]

m

≤ αm−2 · Var[ρ′α(Σ
∗
kℓ − yikyiℓ/2)]

≤ αm−2 · Var[Σ∗
kℓ − yikyiℓ/2]

≤ αm−2K ≤ αm−2K ·m!/2

The second inequality follows given ρ′α(·) is 1-Lipschitz. With

Bernstein’s inequality for U-statistics [47], for any t ≥ 0,

Pr (|W ∗
kl| ≥ t) ≤ 2 exp

( −⌊n/2⌋ · t2
2 (K + αt/3)

)

By taking t =
√
12K log d/n+ 4α log d/n,

Pr

(
|W ∗

kl| ≥
√

12K log d

n
+ α

4 log d

n

)

≤ 2 exp

(
−
(√

12Kn log d+ 4α · log d
)2

4
(
Kn+ (α/3) · √12Kn logd+ (4α2/3) log d

)
)

≤ 2 exp

(
−4Kn+ (8α/3) · √12Kn logd+

(
16α2/3

)
log d

4Kn+ (4α/3) ·
√
12Kn logd+ (16α2/3) log d

· 3 log d
)

<
2

d3

In conjunction with the union bound,

Pr
(
‖W∗‖∞ ≥

√
12K log d/n+ 4α log d/n

)
<

2

d
.

Recall that ‖B∗‖∞ < K/α. With ∇Lα(Σ
∗) = B

∗ +W
∗,

‖∇Lα(Σ
∗)‖∞ <

√
12K log d/n+ 4α log d/n+K/α (24)
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holds with at least 1− 2/d probability.

Given α ≍
√
Kn/ logd, from (24) we have ‖∇Lα(Σ

∗)‖∞ .√
K log d/n . By taking λ ≍

√
K log d/n, ‖∇Lα(Σ

∗)‖∞ +

τ
∥∥∥(Σ∗)

−1
∥∥∥
∞

≤ λ/2 holds with at least 1− 2/d probability.

E. Proof of Theorem 9

Proof: The proof combines Proposition 6 with

Proposition 7 and Lemma 8. By Lemma 8, event{
‖∇Lα(Σ

∗)‖∞ + τ
∥∥∥(Σ∗)

−1
∥∥∥
∞

≤ λ/2
}

happens with

at least 1− 2/d probability.

With n ? s1/2 log d, we have α > 6λs1/2. Proposition

7 indicates that E1(α/2, 1/2) happens with at least 1 −
2/d probability. With union bound, event E1(α/2, 1/2) ∩{
‖∇Lα(Σ

∗)‖∞ + τ
∥∥∥(Σ∗)

−1
∥∥∥
∞

≤ λ/2
}

holds with at least

1− 4/d probability. Under this event and by Proposition 6,
∥∥∥Σ̂

+ −Σ
∗
∥∥∥

F
≤ 3λs1/2 and

∥∥∥Σ̂
+ −Σ

∗
∥∥∥

1
≤ 12λs.

Then it suffices to recall λ ≍
√
K log d/n.

F. Proof of Theorem 10

Proof: Consider using the log-determinant barrier method to

solve problem (12)

min
Σ≻ǫI

{tg(Σ)− log det (Σ− ǫI)}

where g(Σ) := Lα(Σ)+λ ‖Σ‖1,off and t = τ−1. Equivalently,

define

Σ̂
+

τ ∈ arg min
Σ≻ǫI

{g(Σ)− τ log det (Σ− ǫI)} . (25)

The intuition of the following proof is to take the limit of Σ̂
+

τ

as τ → 0. Using the optimality condition for problem (25),

we have

∇Lα(Σ̂
+

τ ) + λΞ− τ
(
Σ̂

+

τ − ǫI
)−1

= 0

with some Ξ ∈ ∂
∥∥∥Σ̂

+

τ

∥∥∥
1,off

. Consider

min
Σ�ǫI

g(Σ)− τ

〈(
Σ̂

+

τ − ǫI
)−1

,Σ

〉
,

we can see that Σ̂
+

τ minimizes this problem. Further, for all

Σ � 0, we have

〈(
Σ̂

+

τ − ǫI
)−1

,Σ

〉
≥ 0 by the property

of the positive-semidefinite cone. Hence

min
Σ�0

g(Σ) ≥min
Σ�0

g(Σ)− τ

〈(
Σ̂

+

τ

)−1

,Σ

〉

=g(Σ̂
+

τ )− τ

〈(
Σ̂

+

τ

)−1

, Σ̂
+

τ

〉
= g(Σ̂

+

τ )− τd

Let g∗ := minΣ�0 g(Σ). So far, we have shown that

g
(
Σ̂

+

τ

)
≤ g∗ + τd,

which can also be derived following the approach in [48]. In

particular, for all τ ≤ 1, we can see that g
(
Σ̂

+

τ

)
≤ g∗ + d.

That is, Σ̂
+

τ ∈ {Σ � 0 : g(Σ) ≤ g∗ + d} := S, with S being

a compact set. Therefore, there exists decreasing sequence

{τn}∞n=1 such that τn → 0 and Σ̂
+

τn converges to some

Σ̂ǫ ∈ S. Moreover, Σ̂ǫis a minimizer for problem (12) because

g
(
Σ̂ǫ

)
= lim

n→∞
g
(
Σ̂

+

τn

)
= g∗.

Meanwhile, similar to the proof of Theorem 9, we can apply

Lemma 12 to Σ̂
+

τ , which concludes that with at least 1− 4/d

probability,

∥∥∥Σ̂
+

τ −Σ
∗
∥∥∥

F
>

√
Ks log d

n and

∥∥∥Σ̂
+

τ −Σ
∗
∥∥∥
1
>

s
√

K log d
n hold for all τ sufficiently small. In the limit, this

implies that

∥∥∥Σ̂ǫ −Σ
∗
∥∥∥

F
>

√
Ks log d

n and

∥∥∥Σ̂ǫ −Σ
∗
∥∥∥
1
>

s
√

K log d
n as well.

Now we prove that Σ̂ǫ is the unique minimizer for problem

(12). We already know that

∥∥∥Σ̂ǫ −Σ
∗
∥∥∥
F

>

√
Ks log d

n .

By taking n ? s1/2 log d, we have

∥∥∥Σ̂ǫ −Σ
∗
∥∥∥
∞

≤∥∥∥Σ̂ǫ −Σ
∗
∥∥∥
F
< α/2.

To put it in words, the interior of B∞(α/2) contains Σ̂ǫ. The

set of optimal solutions is convex. Therefore, if Σ̂ǫ is not the

unique minimizer, there would be some Σ0 ∈ B∞(α/2), such

that g(Σ0) = g∗ and Σ0 6= Σ̂ǫ. Using Proposition 7, we have

〈
∇Lα(Σ̂ǫ)−∇Lα(Σ0), Σ̂ǫ −Σ0

〉
≥ 1

2

∥∥∥Σ̂ǫ −Σ0

∥∥∥
2

F
> 0.

(26)

However, by first-order optimality conditions,
〈
∇Lα(Σ̂ǫ) + λΞ̂,Σ0 − Σ̂ǫ

〉
≥ 0

〈
∇Lα(Σ0) + λΞ0, Σ̂ǫ −Σ0

〉
≥ 0

with Ξ̂ ∈ ∂
∥∥∥Σ̂ǫ

∥∥∥
1,off

and Ξ0 ∈ ∂ ‖Σ0‖1,off. Therefore,

〈
∇Lα(Σ̂ǫ)−∇Lα(Σ0) + λΞ̂ − λΞ0, Σ̂ǫ −Σ0

〉
≤ 0

By convexity of the off-diagonal ℓ1 penalty, we have〈
λΞ̂− λΞ0, Σ̂ǫ −Σ0

〉
≥ 0. Hence

〈
∇Lα(Σ̂ǫ)−∇Lα(Σ0), Σ̂ǫ −Σ0

〉
≤ 0,

which contradicts with (26). We can now conclude that Σ̂ǫ is

the unique minimizer for problem (12).
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