DRAFT: FAST ACCESS TO ALL GRADIENTS IN N
ITERATIONS

JIALIN YU

1. ABSTRACT

In this draft, we first introduce some assumptions on the function class. Then we
propose an algorithm that takes O (Nd?log” d/o2,; (A)) iterations to initialize the
stepping point x,, from which we can access all N gradient vectors within exactly IV
iterations. By storing x,, we only need to initialize for once. Finally, we will show

that a randomly generated function from the function class given in Marsden et.al
satisfies our assumptions with high probability, and omin(A) = Q (\/E) indicates

that the query complexity of this algorithm will not exceed O(Nd log? d), which
approximately equals the optimal rate of optimizing the function class established in
Marsden et.al. Therefore, when designing an algorithm for the function class given
in Marsden et.al, using our algorithm for access to all gradients as a subroutine will
not affect the query complexity.

2. NOTATIONS

For vector v, let ||v|| , and ||v|| denote £>° norm and Euclidean norm, respectively.
Let B denote the unit ball in R? under Euclidean norm. Let © denote v/ ||[v||. For
matrix M, let omin(M) and omax (M) denote its smallest and largest singular value,
respectively. For a finite set S, we use |S| to denote its cardinality, S to denote its
complement. For functionals f(n) and g(n), we denote f(n) = g(n) if f(n) > cg(n),
f(n) < g(n) if f(n) < Cg(n), and f(n) < g(n) if cg(n) < f(n) < Cg(n) for some
positive constants ¢ and C. We denote f(n) = o(g(n)) if lim, . f(n)/g(n) = 0.

3. THEORIES AND PROOFS

Let f,(x) = (v,x) — v, with {’Yvi}i]il to be different from each other, and

3

(3.1) F(z) = max{ fﬁﬁvf”i (z),d°|| Az|| oo — 1} ,x€B

where A € RP*?. Let I and up denote the lower and upper bound respectively, of
max;—1. N fu,(2),x € B. Note that in the special case of Marsden et al. f,,(x) =
(vg,z) — iy, and lp = —O(1/v/N). Further, consider

U= {x|HAx||OO <d 1+ uF)}
L ={z|[|Azlloc <d™>(1+1p)}
Write R(V') for the short hand of R(vy,...,vy), then it’s easy to see that

LCR(V)CU.
1
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Construct the refined projection algorithm (RP) as follows:

P(P P || P R(V
52) Rp(@) - [P P@/IP@I-IP@) = ¢ BY)

x x € R(V)
where P(z) is the result of running the memory-constrainted projection algorithm
starting from x. To put it in words, if z ¢ R(V), RP projects for two times
with the second time acting on the normalized result of the first projection, and if

x € R(V), RP does not do anything. It is easy to see that for any vector x € B,
RP(z) € R(V) C U, and provided that x ¢ R(V),

(3.3) |A(RP(2))llo < d™° (1 +up) |Px)]| <d* (1 +up) 2]
where the last inequality results from the contraction property of the Projection

Algorithm. ((B3) might be further improved, but it seems enough for now.)
Let Vinin, Vinax be two constants such that Vi, < ming—1. v ||v|| < max;—1 n [Jvi]| <

Vmax- Let Ymax — MaX;=1..N Yo, -

Assumption 1. The following assumptions are adopted:
(a) Foralli € [N], |(RP (v;),v:)| > |vi|* /2; (sorry, but this has to be changed
into ||vs]|* - (p/d), which does not affect the results)
(b) For alli,j € [N] with i # j, |[{RP (v;),v;)| < B for some apriori upper-
bound 8 with NS = o(1);
(¢) omin(A) = Q(1);
(d) (Zf\;l (Vo; — Wmax)2>1/2 < r for some positive constant r with

I+1p
1+up '
(e) N < d; (this might not be sharp, but enough for the following analysis)

21 /Viin < (1 — @)

We will show that the function class given in Marsden et. al satisfies Assumption
[ w.h.p in next section. Moreover,

[(RP(vi),v; — RP(v5))| = |[(RP(vi) = Projiey ) (vi), vj = RP(v5))

< [RP@:) = Projgera (@) - o = RP(w)
N Dl llos — RP(v;

< oy A @RP@) o - v = RP(y)]
N/

< g ur) 2l

the last inequality uses (B3). Therefore, we conclude that
(RP(v:), RP(0;)] < [(RP(v3), 0, — RP(0;)] + |(RP (v;) ,0,)]
(3.4) - N7
o Umin(A)

Lemma 2. If x = Zivzl Xi - RP(v;) satisfies |(\; - RP(v;),v;)| < A; for some
A;>0,i=1...N, then

1/2
[z < (24 0(1)) - (Z A}/ |Ui|2>

i€G

d (1 +up)-2|v|| + 8 = (1 +o(1))8.



https://yujl1.github.io/files/The_proof_of_the_projection_algorithm-5.pdf
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where G = {i € [N]: \; #0}.

Proof. Without loss of generality, assume G = [N]. With ([B4]), compute

N
2] = A2 [RP:)[I* + > Aid; (RP(v;), RP(v;))

i=1 i#]
N

<> an/ il IRP @I + 304 (Ai/ Joil) (A7 105117 (1 + 0(1))8
i=1 i#]
N

< ST AN/ Yfoil® + 32082/ Juill* + A2/ [luj|1*) - (1 + 0(1))8
i=1 i;éj

—Z4A2/ [ +Z (AF/ Jlval) - (14 0(1))8 - (2N - 2)

N
= S48/l 1+ o)

The second last equality follows from the lower boundedness of ||v;|| and the last
equality follows from NS5 = o(1). O

3.1. Initializing the stepping point x;. We would like to explain some intuition
of algorithm [l Let v;, be the gradient at zj. Let T < min;—1. n fu, (z¢) be the
target of algorithm in this round. Consider turning the value of f,, (z) into the

target T' by moving from the current point zj to Tpr1 = zp — (fmk (zx) — T) .
RP (v;,) /{RP (vi,,) ,vi,). We move every step towards the target value by only
accounting f,, () for some i) € [N], this would introduce a perturbation to the
rest of the components of B.1)), i.e. all f,,(x) with j # ix. To be more specific, let
Ay = fwk (xg) — T for all 0 < k < N,,, — 1. And the perturbation is

‘fvj(fl_c\ﬂ) - f'Uj (xk)| = |Ak ! <RP (vlk) 7vj>/<RP (vik) ’vik>|

3.5
(3.5) < |Ax|- 28/ ||vi, 1P

The last inequality holds with Assumption [[I There is also another type of per-
turbation given Zp 11 ¢ R(V), which results from the projection of Zp1; to 41 =
RP(zr11). To analyze this type of perturbation, we first compute

14k — 20

= | A - A(RP (v3,)) /{RP (v3,) v )
< 2|Ax| - |ARP (i)l / [0, ]

< 2|2k - d7 (1t up)/ vi |

(3.6)

The last inequality holds by 3). Now we can analyze the process of the projection
from Tpy1 to 211 = RP(Trpy1) given T 1 ¢ R(V) and z € R(V).
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Algorithm 1: Initialize x4

IHPUt: Na Bu Vminu Ymaxs
1 Initialize £ = 0,7 = —V0x — (2\/NB/V£1H) ,my =
{— log N/ 10g(7NB/Vn2ﬁn)] ;ma = O(log d);

2 form=1,2,...,m; do
3 History = (;
4 | (v, f) < Query(z);
5 while (v,2) — f ¢ History do
6 add (v, z) — f to History;
7 x=xz—(f—T) - RP(v)/(RP (v),v);
8 x = RP(x);
0 (v, f) ¢ Query(z);
10 end
11 | T=T-2VNB/VE)(TNB/VE)"
12 end
13 =P (P(x)/|[P@)[]) - | P(@)[];
14 for m=my +1,...,ms do
15 History = (;
16 | (v, f) < Query(z);
17 | while (v,z) — f ¢ History do
18 add (v,z) — f to History;
19 x=x—(f—-T) - RP(v) /(RP (v),v);
20 x = RP(x);
21 (v, f) ¢ Query(z);
22 end
28 | T=T—2VNB/Vin)(TNB/ Vi)™ s
24 end

25 Output z as x;.

Recall that A € RP*9,

|75 -z || < —Y2 || A (@ - RPGET)) |

Umin(A)
-5
37 = am\ifA) <2C|l|v_ |||A2k| S(L+ur) + |4 (o - RP(EI?H))Hoo)

The second inequality holds with ([B.0), and the last inequality holds because
RP(zp11) € R(V) C U and 2, € R(V) C U. Recall that v;, is the gradient
at xy. For j € [N], the perturbation is

’fvg(x/k\-l_-/l) - fvj(xk-i-l)‘ = ‘<Ujvm _‘T/H-l)’

(3.8) —
< sl - H$k+1 - CCk+1H
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Let V,, denote the number of iterations in round m, which indicates that the
gradient at xy,, coincides with the gradient at xy. For some 1 <1 < N, — 1,
consider the perturbation on fy, (x) before observing the gradient vector v;,:

-1
Foug@1) = fur (@0)| £ 37| o, (@) = fon, (20|
k=0
_ -1
Z Fow @r41) = for, @D + D 18] - 26 o, |
k=0

The last inequality follows from 35). By B2), xx11 # Ty if and only if 751 ¢
R(V). Let Sy = {0<k <Ny, —1:Zp1 ¢ R(V)}. Combining (1) and (B3)
yields:

(3.9)

[ oy 1) = fu, (20)|
-1

<y \/— ( B R e +uF)> + D18k 26/ [loi, |
k=0

kes,, Umm Hvlk”
d_5(1 + UF) max\/—
< E :
- (1+ Bomin(A) ) 125l -28/ I+ 18l

with 7 := Zm_"“‘(\g 2d=5(1 + ur) that turns out to be an important threshold. Let
61 = fu;, (x0) — T, we can now assert that

(3.10) A <6+

fU'Ll (xl) - f'Uil (‘TO)‘ .

Combining this with (39, we have

Np—1 Ny —
- 2Nm
> Akl < Z Ok + g Z | Ak
k=0 k=0 Viin
VmaX\/ﬁ |Ak| _5
N,, - (1 2d°(1 .

With omin(A) = Q(1), d°N?\/p/omin(A) = o(1) and N3 = o(1), this immediately
yields

Npm—1 Np—1 \/_
o ((Z 5’“)” 180l G2 (IMF))

k=0 k=0

Nyp—1
= (1+0(1)) (( 3 5k> +Nm-|sm|7> .
k=0

BII) indicates the following crude bound that is also useful

(3.12) f |AL| < (1+0(1)) << f 5k> +N§1-T>

(3.11)
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Similar to 3.3, at the end of the whole round the total perturbation to fy, (z) is:
(3.13)

Nm 1
Jou(@n,) =T < D7 |, (0) = fun, (@)
k=I1+1
Np—1 N,,—1
<Y [fo @ren) = o, GO+ D2 | o, @) = o, 1)
k>1 k>1
ol v (2475 1A i, Nt )
<> X (Lt up) +2d (L +up) |+ D (Al 28/ v,
vz, Omin(A) U flvi,l k=l+1

d=5(1 + uF)Vmax\/ﬁ> et )
(1 ™) 2 184128/ ol 51501

The first inequality holds because by construction of the algorithm, fu, (z14+1) =T
In the above analysis, we have discussed the iterations in round m using v;, , T, Tr, Ok, Aj
and T. Now we need to do induction over m and use vgl:n), a:,(cm), ™, 5,(;”), A;ﬂm)

and 7™ to denote the corresponding variables in round m.
Briefly recall from algorithm[@} 7(™) = T(m=1) —(2/N3/V2, J(TNB/V2,, )" 2

Theorem 3. Suppose that Assumption [ holds. Then for the m’th round (1 <
m < my < mg with mg = |—5log N/log(TNB/V2,)| = O(logd)) of Algorithm [,
the following statements hold:

1. For alll € [Np,],

max{\!ﬁ”)H,Hx%’”’H}s(L"(”)H(Q;S >§7Nﬁ/ 2051 1 (m = 1)(2 + 0(1) N7/ Visin

7 (24 0(1))/Vinin
with some o(1) and o' (1) that do not vary for different m.

2. For all k € [Nl | o, (a2)) =T < (VNB/Vi) - (TNB/ Vi)™

3. Ny, = N i.e. all gradients will be queried in round m;

Theorem Bl and Theorem M] corresponds to the two “for loops” as illustrated in
algorithm [I Between them lies the mandatory projection step, i.e. no matter z ¢
R(V) or not, we update x < P (P(z)/ || P(x)]])-||P(z)||. This is important because
the distance from B\ R(V) will always be lower bounded by a certain number ever
since the mandatory projection, which indicates that 2 will not get out of R(V') for
the rest of the algorithm.

Theorem 4. Suppose that Assumption [1l holds. Then for the m ’th round (m >
my +1) of Algorithmlj] the following statements hold:

3+o(1 -
1. Z] m1+lzk 0 o ) _

<SS S (TNB/ mm)l < ﬁ with some
o(1) that does not vary for different m.
2. |Sm| =0, i.e. the Refined Projection algorithm will not be called in round m.
3. For alll € [Ny,],

o {1 [} < (5220 ) v () SN T < 2000 Ve

min min k=2
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with some o(1), 01(1) and 02(1) that do not vary for different m.
4. For all k € [Nun], | fun, (@) = 70| < (\/_ B/Viin) - (INB/VZ, )™

5. Ny, = N i.e. all gradients will be queried in round m;

From statement 2 of Theorem @l we can see that the Refined Projection algorithm
will not be called once m > mq + 1, so &5m = a:l(m) for m > my + 1 and [ € [N].
Further, from the proof of Theorem ] we will see that for all [ € [N]

m Nj*l )
o< o]+ 553 |

j=mi+1 k=0 e
m Nj—1
<dPU+ipi-a)+ Y Y 2 ’A(” 5(1 4 up)/V2,
j=mi+1 k=0
5 1+ur -5
<d”P1+1lp)(l—-a+ ) <d 7P +1p)(1—a/2)

VN (1 +1p) V2,

Note that we need HA (™) H > d=5(1+1p) if 5™ € B\R(V). This gives the

lower bound of the distance rom B\R(V) uniformly as m — oo.

What we are trying to explain here is that, by statement 4 of Theorem M algo-
rithm [l will get x5 arbitrarily close to I(V) = {z : f,,(z) = fu,(z) = = fo(¥)}
while keeping a constant distance from B\R(V). Within O(logd) rounds, z, will
end up in a “scenario” that is similar to the case without A because the distance
from I(V') is very small in comparison with the distance from B\R(V'). At this
point, we can just perform the moves in the direction of v; instead of RP(v;) as
shown in the following algorithm [2] and do not need to worry about getting out of
R(V). Since it reduces to the case without A, within N iterations, every gradient
v; will be seen. We omit the proof of this claim, which is very similar to the proof
of statement 5 in Theorem [}

Algorithm 2: Access all gradients

Input: N, z,mo, T(™2);
1 Initialize v = 2., T = T0™) — (2VNB/V2,) (TNB/VE,)™
2 for k=1,2,...,N do

3 | (v, f) < Query(z);

4 x=x—(f=T) v/{v,v);
5 Output v;

6 end

Now we turn to analyze the query complexities. The Projection algorithm takes
O (d®logd/cZ;,(A)) iterations and there are O(N) calls for the Projection algo-
rithm in each round. With O (Nd?logd/o?2; (A)) iterations in each round and
a total of O(logd) rounds, algorithm [ takes O (Nd? log?d/o?,;, (A )) iterations.
Though the computation of x is expensive, we only need to do it once. After that,
we can just do algorithm [2] and see all gradients within only N iterations.
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3.2. Verification of Assumption []for the function class given in Marsden
et.al. We would like to point out that by (B3],

and that verifying AssumptionIlwith all RP(-) replaced by Projke,(a)(-) is enough.
Among all the assumptions (a) ~ (e), the hardest one to be verified is (a), so we
will only verify (a) here for brevity. (This draft has exceeded 20 pages...)

. p _
Profg(a) () — RP()| < 0 a0+ up) ]

Lemma 5. E |(Projc.,ia) (vi),vi)| = [0i|* /2 and (Projyco,ca) (vi) ,vi) > ||vi]|* /3
w.h.p.

Proof. Recall that ||v;]| = 1 and p = d/2 in Marsden et.al. Let B € R2%% be a

matrix with its rows {bz}zdi ? to be an orthonormal basis for Ker(A). Write v as the
shorthand of v;. Then we have

/2
(Projker(a) (v),v) = v BT By = ZvaibiTv >0
i=1
with strict inequality when v € KerA+. And
/2 /2

We turn to analyze the variance:

/2

(3.14)  Var(Projge,(a) (v Z Var [ )2] + Z Cov {(vai)Q , (’UTbj)ﬂ

7]
For the first term in (B14),

Var [(UTbi)Q} =E {(vai)ﬂ —1/d?
= (1/d*)E <i skbik>4 —1/d?,

k=1

where s; € {1, —1} is a binomial random variable with P[s; = 1] = 1/2. Further,

d 4 d
(Yont) 5 (Y k) + X @eishots
k=1 k=1 k<l
d

= Z by, + Z 6b7,b3

k=1 k<l

d
3 (Z b + 22%@%) =3 ||bl|* =

k=1 k<l
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We have obtained Var [(vai)q < 2/d?. Now we turn to bound the second term

in (BI4). We will show that the covariance term is always nonpositive. Compute

Cov | (v70:)", (v70;)"| = B [ (v70)" (v70)°] —E (v70)"E (v;)°

2 d 2
1/d2 (Z Skbzk> <Z Slbjl> — 1/d2

=1

Further,

d
E sz ksk+z 2blkb”8k81) (2bjkb]lsksl +Z Skbzk (Slbjl)z

k=1 k<l k£l
= Z bzkb ik + 4Zb1kb1lbgkbﬂ + szkbjl
k<l k£l
= [1bll* 116517 + 2> (birbi) (bubsi)
k£l

=142 Z (birbjk) (bibji) — 2 Z b7 b3,
%

=14 2(b;, b;) —22% .

we already know that {bz}fi i is an orthonormal basis, so (b;,b;) = 0, and

d 2 /4 2
(Z Skbik> (Z Skbjk> =1- 2Zb§kb3k <1
k=1 k=1 k

which results in Cov {(vai)z , (vaj)Q} < 0. Consequently,

Var (Projge(a) (v) ,v) < 2/d°.
With Chebyshev’s inequality,

P [(Projie(a) (v) v} 2 1/3] < (1/22176[2

38 = 72/d?.

With union bound,

P [ max (Projger(ay (vi),vi) > 1/3} < 72N/d* = 1/poly(d).

3.3. Proof of Theorems.
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Proof of Theorem [3.

Proof. We first do the case for m = 1.
We start with the first statement. By Lemma [2] and with xél) =0,

9] < |3 @ -o2) )+

<2+ 0(1))- (ZYAEP)Q

> [ =]

(3.15)
ot
ik

2 1
) Bl
k=1

Combining (B377) and BI2) yields

(3.16)
Ny
-]
k=1

M 247 A
< VP — L Ut up) | +2Md (1 + up)
=\ (&

ik

N;—1
SO’\/]?A) (2d 5/ mln) (1+UF)1+0 ((Z 5(1>+N1 )

3 /]?A) :2N1d (1 + ur)
Ni—1
:amﬁm (247 Via) - (1 £ ur)(1 + 001 (Z ‘5(1> amﬁm'2N1d‘5<1+uF><1+o<1)>

_ VP 943y 1 N 5 15”
_Umin(A)( )( +U‘F)( +O( 1+ Z /mm

Further, given that 5,21) =—y,m — T and T = (”Ymax +2VNp/ mm)
(3.17) '

Ni—1 2 N1 1/2
(Z(@i”ﬁ) s(Z (”ngl)—%nax)> +2V/NINB/VE, < 142NV,

k=0 k=0

where the last inequality follows from N7 < N and (d) in Assumption [l Provided

1/2
that ENI ! 1) <+VN (ENI 1( st )2) < VN, from (BI6) we have

ZH”“ ol =0T — o),

Umln
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Then we turn to bound the first term in (3I5). By (33, we have

fvg) (.%'l(l)) — fvgl) (.’L'((Jl))'
i 1

Ni—1 2
< (+o(1)) Y2 |aP] 287 o]+ 15117
k=0

(3.18) Ny—1
< (1+0(1)) << 3 5,2”) +N127> 28/V2., + |51 T

k=0
Ni—1

1/2
s<1+o<1>><2(6£”)> VN -28/V2, + o(VNB)

k=0

where the second inequality follows from ([BI2)) and the last inequality follows from
Cauchy’s inequality and Ny < N. Combining this with (3I0) yields

Ny o\ /2 Ni—1 V2 N1 o\ 1/2
(Z(AEJ’F v ) < (1/Viin) (Z(é,i”)2> (Z f(l)( Dy - fvgl)(xS)))
— k=0 1=0 L
Ni—1 1/2
= (1/Viuin) ( > <6§:>>2> (L4 0(1)) =7 (1 + 0(1))/Vinin
k=0

where the first inequality follows from the triangular inequality, and the last equality
follows from (BI7). Therefore, we finally have

o2 <27 (4 0(1)) Vi

for all [. It is easy to see that this holds for fl(l) as well. So the first statement for

m = 1 is proved.
Now we turn to prove the second statement for m = 1. By (BI3]), we have

‘f o ( -7
Ni—1
1
< (1+o() Y AP
k=0
(3.19) Ny—1
(1+o0(1 ((Z 6”>+Nlr> 28/Vzi + 51| 7

Ni—1 ) 1/2
< (1+0(1)) (Z (5,9) ) VN -28/Vii, + o(VNB) < VNB/Vi,

k=0

2
’Uz(li)H + |Sl| T

where the second inequality follows from (B12)), the third inequality follows from

1/2
Cauchy’s inequality and the last inequality follows from < kNlO ! (5(1 ) > <

< 0.5.
Finally, we begin proving the third statement for m = 1. For the sake of contra-
dictory, assume N7 < N, i.e. some v; is not queried in round 1. Through similar
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analysis as we did in (39),

forlal§) = ()]

-5 (1) N{—1
il vp (247 |A0) y >
< 1 2d73(1 }
< Z T (A) ‘ 0 3 (I1+up)+ (I+up) |+
keS ’Uik =i

Ni—1

1+0 Z ’Au’ 26/ m1n+|Sl|T

We continue to assert that by similar process in (B19]), we have

Nl 1
foali) = fu @) < L+ 0(1) Y2 |ARD]-28/VE, + 1547
k=0
Ni—1 ) 1/2
s<1+o<1>><2(6,2”)> VN - 28/V2, +o(VNB) < VNB/V2,
k=0

o\ 1/2
where the last inequality follows from ( ]kvzlgl (51(:)) ) < r < 0.5. Since

xél) = 0, we have fvv(:v(gl)) = —Yu; > —Ymax, and

fvz(‘er) > f’Uz( ) \/_B/ min > _'Ymax \/—ﬁ/ min

With 71 = (vmdx +2vV/NB/ mm) consider (B.I9) and yield

f (1)( ) <T ) + \/_B/ min — — Ymax — \/—ﬁ/ min

for all 0 < [ < N; — 1. However, given that v; is not queried, we must have
max;—o,1..N,-1 [, (1)(:1:5\, ) > fo,(z 1)) contradictory! Now proof of the third state-

ment is complete.

Now we begin the induction step: Let 2 < m < mg = —5log N/log(TNB/V2,.).
Assume the three statements are true for m — 1, we will prove that they are still
true for m. We start with the first statement. For any [ € [N,,], by Lemma 2]

(3.20)

mase (o = [ ] } <

> [ —xé’”’H

kESm

N’V?‘L
()]
k

Ny,
< (2+0(1))- (Z(A,ﬁm)w

k=1

The equation (BIT]) will be useful in the following analysis, so we paste it here for
reference:

i Akl < (1+0(1)) (( f 6k> + N - |Sm|T> :

1/
2
)+ )
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Combining (377) and BII) yields

(3.21)

3 Hg;(m)_xlg )H

kESm

< . T/I?A) ((2d SIVEL) Z }Al(cm)}'(1+UF)+2|Sm|d_5(1+uF)>
e kESm

Ny, —1
= 0_7% ((261 5/V2) (1 +up)(1 + o(1)) (( 3 5,§m>> + Np - |Sm|7> +2[8,d (1 —I—uF))

k=0

Np—1
oAy (L o) ((Zd */Viin) (14 ur) ( > 5,@) +2|Sm|d—5(1+uF>>

k=0

Ny, —1 ) 1/2
Umin(A) (1 + 0(1))(1 +UF) (( / mm) \/_m< Z (6}?”)) ) + |Sm|)

k=0

S

IN

From (39) we obtain

£ al™) = ")

i]n (o] 2
< Z rom(A \/_ = 5 1+UF)+2d_5(1+UF) + Z ’Aém)‘ﬂﬁ/Hvxn)H
]
Nm
(1+4o0(1 Z }Am)’ )H + S| T ;
k=0
N
(1+o(1 ((Z 5£”>+Nm-|sm|f> 28/V2 + |Sm 7
k=0

N,,—1
(140(1 (( 555”) 26/ mm+|sm|r>
k=0

where the second inequality follows from (BI1]) and the last equality holds because
NG = o(1). Note that every “o(1)” does not vary for different m.
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Combining this with BI0) yields
(3.22)

N ) 1/2 Nop—1 1/2 N —1
(Z(AS’”)Q/ o ) < (1/ Vo) ( > <6§J">>2> + ( > @) = (e
k= k=0 1=0 ! “
N, —1 1/2
= (1/Vanin) ( <5§;">>2> + (1 Varin) VN1 + 0(1))
k=
’ N,,—1
(( > 62’”’) 23/ mm+|sm|f>
k=0
Ny —1 1/2
= (1/Vinin) ( Z (5](€m))2> + (1/Vinin) v/ N (1 + 0(1))
k=0
N, —1 1/2
( > <5§;”>>2> 2/ N B/ V2 + Sl 7
k=0
Ny —1 1/2
= (1/Vinin) (1 + 0(1)) ( > (6,2’">>2> + 18] - V/NonT
k=0
Still, each “o(1)” does not vary for different m. Combining (3:222) with (320) and
B21) yields
(3.23)

max {Hxl(m) —T

@ =g}
Non—1 1/2
< (1/Vinin) (2 + 0(1)) (Z <6,im>>> +1Sm| - VNt

k=0

Npn—1 1/2
= (1/Vinin)(2 + 0(1)) <Z (3\/Nﬂ (TNB/ Vi)™ 2/ mm)> +[Sm| - /Nt

k=0
< (1/Vauin) 2 + 0(1)) ((3/7) - (TNB/V2)™ ™ + |- J_m)

where the first equality holds because, with (™) = T(m (2\/_B/ mm) (TNpj/
Vrr211n)m72

(3.24)
5(m ‘Tm 1) T(m)‘+'f( ) 5CN )) 7(m=1)

and the statement 2 for round m — 1,

< (2VNB/VE) - (ONB/VE)™ 2+ (VNB/VE) - (TNB/VE) "
=3VNB - (TNB/ Vi)™ %/ Vioin

for all 0 < k < N,,, — 1. Note that in (324]), the bound on

f o (™) = T
"k

also relies on statement 3 for round m — 1, which guarantees that vglzn) will be
queried in round m — 1.

)

)

1/2
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Given the first statement for m — 1 hold,

7] = =

Np—1

2+ 0(1) 2—|—0 e - 42
< — .
<( Vinin r+ Vn%m kzﬂ 7Nﬂ/ mm + (m —2)(2 4 o(1))N*/“7 /Vinin
Note that for m = 2, take Y7, (TN )1 == 0. And
(3.25)
i ([} < o e ] i~ ]

< (A, 4 2 Ej?Nﬂ/mmﬁl + () SN s

min min

+(2+0(1))(m -2+ 1) J_V 327 [ Vinin

2+ o(1) 2+o -
< (TN
o " kZZ B/Visin)

+ (2 + 0(1))(m - 1)N3/27—/Vmin'
With m < —5log N/ log(TNB/V2.) = O(logd) , we have
(24 0(1))(m — 2)N3/%7 /Viin < (24 0(1))logd - N3/27 | Vi = 0" (1).

Since o(1) does not vary for different m, o’ (1) does not vary for different m, either.
Therefore, statement 1 is proved for round m:

m —(m 2 1 2 m
s [l [ } < B2+ G S anava 4 o)
min min k;:2

re(2+ 0/(1))/Vmin

Before proving statement 2, we need to estimate |S,,|. Since (d) in Assumption []
for d sufficiently large (uniform in m),

m ~ (m 1+lF
mas {7 } < 0 - e

If a:l )£ 5™ then a:l ) ¢ R(V). And by B3), we have

(3.26) HAxl(m)H <d=5(1+ur) H@WH <d 51 +1p)1 - a),

which shows that once finished running the Refined Projection Algorithm, the cur-
rent point will be of at least some distance away from R(V). And the projection
will not be called until this distance is covered up. To be more specific, given ([B.6]),

I+1'—1 I+1'—1
o =l
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Therefore,
I+ —1
|a@= )| < |aem|+ X 2| a0 ue) Vi

)

I+1'—1
<d P+ -a)+ Y 2{AfP] a1+ un)/VE,
k=l

which implies that if 7777 " ¢ R(V) and has to be projected, then

I+1'—1
(3.27) 32 ‘A,@’ (L +up)/V2, > (1+1F)a.
k=l

—

Recall that S,,, = {0 <k<N,, —1: xk+1(m) ¢ R(V)} denotes the number of call

for the Refined Projection Algorithm in round m. With the intuition demonstrated
above, the following holds:

N,,—1
(3.28) S| <1+ ( Y 2 \A,@\ (1 +uF)/V,,%in> /(1 +1p)a).
k=0

Now we can elaborate our analysis with this bound on |S,,|. Recall (BI1), we can
easily obtain

N,,—1 Ny, —1
3 ’A,ﬁ’”)} < (14 0(1)) (( 3 5};"’) + N, - |Sm|7’>
k=0 k=0

Np—1 Np—1 ’
< (1+o0(1)) ( 3o s +Nm7'> +o(1)- Y }A,g"”}
k=0

k=0
which immediately implies

Npy—1 Ny —1
3 \A,@\ < (1+0(1)) ( S +NmT> .

k=0 k=0

Now we turn to prove the second statement for m. By ([BI3]), we have

’ fom (2 = T
2

2
vz(:l)H +|Sm| T

Np,—1
< (L+o(1) Y [Alm]-28/
k=0

Np—1 2 Nt
<(1+o(1) Y ‘Algm‘.zg/ vg;n)H +o(B): > ‘A;’”>‘+T
=0 k=0

(3.29) -
< (1+0(1)) (( 3 5};”)) + NmT> 2BIVE LT
k=0
< (1+0(1)) (Nm 3VNB - (TNB/V2, )" /V2 + Nmf) 2BJV2 4T
< (1+0(1)-(6/7)- VNB-(TNB/VZ)™ 1 [V, + (1 +o(1)7
< (13/14) \/Nﬁ ) (7NB/Vr121in)m71/V1121in < \/Nﬁ : (7Nﬁ/vﬁlin)mil/vﬁlin
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where the second inequality uses ([B28)), the third inequality follows from (BII)),
the fourth inequality follows from ([B:24)), the fifth inequality holds given NS = o(1)
and the second last inequality follows given m < my.

Finally, we begin proving the third statement. For the sake of contradictory,

assume N, < NN, i.e. some v; is not queried in round m. Through similar analysis
as we did in (33,

fvl(xsg;)) - fvi(xém))‘

—5 [ A(m)
ol o7 [ 247° |20
Omin(A) v(m) H2
ik

(1+o(1 mz } m)’ 28/V2i, + |Sm| T.
k=0

2
ik

Ny —1
< S(Itup)+2d5 A +up) [+ Y ‘A,@‘-
kESm, k=0

We continue to assert that by similar process in [3:29]), we have

Fore§0) = fua§™)] < (14 01 Z\Nm\w/ Vi + 15l 7
< \/—ﬁ (7N/3/ mln)m 1/ min

Since statement 3 hold for m — 1, vl must have been queried in round m — 1. Then
with statement 2 for m — 1, fvi(x ) = fu(zy (m— 1)) > Tm=1) (\/_ﬁ/ mm) .
(TNB/ Vi)™ %, and

Fo@§e) > fo(af™) = (VNB/VEL) - (TNB/VE,)™ !
> T = (1 TNB/VE,) (VNB/VEL) - (TNB/VE,)"

With 707 = 7(m=1) _ (2\/_ 3/ mm) (TNB/V2,)™~2, consider (F2) and yield

Fum @) < 70 4 (VNB/VE,) - (TNB/VZi) ™
=T — 2= TNB/V2) (VVB/VE) - (TNB/VE)" 2 < fuu ()

for all 0 <1 < N, — 1. However, glven that v; is not queried, we must have

Max;=0,1...N,,—1 fv(m(xN ) > fm( ), contradictory! Now proof of the third
7’[ m

statement in round m is complete. 0

Let my = [—log N/log(TNB/V2,)]. We would like to recall that the pro-
posed algorithm [ is designed to do a mandatory Projection at the end of round

™M1 no matter :ES\?“) ¢ R(V) or not, i.e. xémIH) =P (P(;ES\?“))/ HP(:ES\?“))H) .
HP(:ES\TI))H And by (37) and [B.8), for all j € [N], the perturbation caused by
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this mandatory projection is

(3.30)
—5 [ A (m1)
foy (#8) = fu, (= mﬁl))‘ggzr(g “ J;j_l (14 up) + 24751 + up)
= (1+ Al v

To estimate A%nji, combining (312), 39) and BI0) yields

e

N-1
<O+ (1+0(1)) - 28/ Vi, (Z o

—|—N27> + N1
k=0

Recall the bound established in ([3:224) we have

A% < (1+0(1)3VNB-(TN B/ V)™ 2 Vit (140(1)) 28/ Vi N3 r+NT = o(1).
Plugging this into (330) yields

fur (28) = fuy (2640 < (L4 0(1))r

Since m; < myg, with TheoremBL we have for all ¢ € [N]:

Ju @) = 70| < (VNB/VZ,) - (TNB/VE,) ™ < N2,

Moreover, if we take a closer look, we will see that in the development of ([B.29),
Fu@§) = 70| < (13/19) - (VNB/VE) - (TNB/VE)™ ",

we already know that = o (N =/ 2), which, combined with ([B3231]), results in

fop (3§ 0) = T0| < (VNB/VEL) - (TNB/VE)™

Now we turn to bound H:E((Jm1+1) H

=5 = | (Pt e ] - [pas)|
P [P Pk < ot

where the last two inequalities hold by the contraction property of the Projection
Algorithm.

Proof of Theorem [4)

(3.31)

(3.32)

(3.33) 3 ’

Proof. We will first prove statement 1 ~ 5 in order for m = my + 1. By [B.3)), since
D = P (P || PEl)) - [|PEi)).

(3.34) HAxgm1+1>H gd*5(1+uF)Hx§V1> “5(1+1p)(1 - a)

Given ([B37)) and with the intuition demonstrated in (2Z1), we can get a much
better bound than (3:28)), namely,

Nm1+1—1

(335)  [Smel < || X 2[ATV @ un)/VE | /(1 1R))
k=0
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Now we can elaborate our analysis with this bound on |Sy,,+1|. Recall BII]), we
can easily obtain

Nipq41—1 Nipq41—1

> A <o) [ X ) 4 N Sl 7
k=0 k=0
Nong+1—1 Nong+1—1 ’
< (1+0(1)) A R ORED DI 'S
k=0 k=0

which immediately implies

N7n1+1_1 N7n1+1_1
> |armt < (o)) gimtD
k=0 k=0

with some o(1) that doesn’t vary for different m. Also, by (3.32),

gt < ’T(ml) - T<m1+1>] + }fvl;mm)(x%ff) — )

< (2VNB/V2) - (INB/VE)™ " + (VNB/VE) - (TNB/VE) ™
=3VNG - (TNB/Vizin)™ ™/ Vidin-

Therefore,
(3.36)

N7n1+1_1

(m1+1) , mi—1 (3+0(1))
> A D] < (1 o)N - 8VNB - (TNB/Va) ™ ™ Vi, = < 2

and statement 1 for m = my + 1 is proved. Since % <= 0(1), (B35) implies

that |Sy,,+1| = 0, which proves statement 2.
By B23), for all I € [Ny, 41]

3

1 1
oo |

< (1 Vi) (2 + 0(1)) ((3/7) - (TNB/V2)™ + S| VN7
= (1 Vain) (2 + (1)) (3/7) - (TNB/V2,)™

Also, by (833) and statement 1 of Theorem [3]

e )

o < o

() (5 <1>> Z(7Nﬁ/ V2 (1 = D2 + o)V Vi

min k=

(), (20) S,

. 3
len me =2
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The last equality holds because m; = O(logd). Therefore,

{4 )

< (B2 () SNV 4 (Vi) 1) (/) (TN V)™

min k=2
2+ 01(1) 2+o(1) " -1
() e (52) -  ovanar

which proves statement 3.

By B.I3), B.36) and |Sy, 1] = 0:

(3.37)
N7n1+1_1
]fvww(xﬁv;i’) TR < (L4 o(1)) YD At 1] T
Zl —
Nm1+1
= (1+o0(1)) }A(“““ }

<(1+0(1))N3\/Nﬂ (7Nﬂ/ mm)m1 1/ min 2[3/ min
< (VNB/VE,) - (INB/VE)™

which proves statement 4.

Finally, statement 5 in Theorem Ml follows with exactly the same reasoning as
in the proof of statement 3 in Theorem [Bl and we will only state the steps without
detailed explanation: Assume some v; is not queried in round m; + 1, then

fuy a0 E0) = 10| < (VNB/VE,)-(TNB/ mm>m+(f B/Viai ) (TNB/VE )™ !

Ny 1

where the second term is caused by (B32). With 70mi+1) = (2\/_ B/ mm)
(TNB/V2,,)™ " and @30,

Fygmen (72 500 < 10— (2VN B/ V2 ) (TN B/ Vi)™~ (VB Vi) (TN B/ Vi)™
which contradicts with

Fuy @5 0) > T (VNB V2 )TN V)™ 7 = (VNB/VEL ) -(TNB V)™

Now we begin the induction step: Let m > mj + 2. Assume all five statements
are true for m; +1,my; +2,...,m — 1, we will prove that they will still be true for
m. Since we already know statement 1 holds for m — 1,

Z Z‘ (J)‘<3+O

j=mi1+1 k=0

. ; (7Nﬁ/ mm) - < T

Then, similar to the intuition of ([335]), we have

(338) |8l < K(Qf+ Z ay ’"’D (1+ur)/ mm>/<<1+zF>a>J.
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Now we can elaborate our analysis with this bound on |S,,|. Recall (BI1), we can
easily obtain

Ny —1 Ny —1
3 ]A,ﬁ’”)] < (14o0(1)) << 3 5,8”)) + Ny, - |Sm|7’>
k=0 k=0
Ny —1 Ny, —1
§(1—|—0(1))<Z 5,8”)) o(1) - ( + Z ’A m>]>
k=0

which immediately implies

Ny, —1 Ny, —1
Z ‘A m>‘ < (1+o0(1)) < 3 5,§m>> +o(1)

k=0

with some o(1) that doesn’t vary for different m. Also, by (832,

< (2vNB/VE) N + (VNB/VE) - (TNB/VE)"
=3VNB - (TNB/Viti)™ ?/Vidia:

Therefore,

Nyp—1
S [Al)] < 1+ o)V 3VRB- TNV Vi 2D

k=0 2\/_
G+o) /5. . L o)
=—" TN mem TN oy —=
. (TNB V)™ ™ (I VE)™ + 22
B+o(1) —mi—1 . o)
< TNB/ Vi) ™M™ 4+ —=
N TNB V) 2VN
where the last inequality follows because m; > —log N/log(7TN3/V2, ). Combin-
ing this with (3.38) yields
(3.39)
1+0(1)  34o0(1) _ 1> 1+up
S| < + TNB/VR ") T ) < 1.
sl < (S + S (V) i+ iravg,

Here we still would like to point out that every “o(1)” does not vary for different
m, so the last inequality holds uniformly for all m > m; + 2 with sufficiently large
d. (339) immediately implies statement 2.

Again, with B.11)),

Np—1 Np—1
> [a| < a+o (( > 62”) +Nm-|sm|7>

k=0 k=0
(3.40) o5

m 3 o(1 m—mi—1
= (1+0(1)) ( > % >> <22 v

k=0
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22
Then,
m  Nj—1 ‘ m—1 Ny —1
SISNIIES Sib SIFI RS SHRE
j=mi+1 k=0 j=mi+1l k=0 k=0
3—|—0 = i-1 . 340(1) m—mi—1
= Z 7NB/ mln) + 7\/N (7NB/ mln)
~ 34o0(1) 'm_ml ie1
== ; (TNB/Vaw)" -

which proves statement 1 for round m.

By 323), for all [ € [N,,]
oo {47 ]

< (1/Viin) (2 + o(1)) (( J7) - (TNBJV2, )™ + | S, - \/—mT)
= (1/Viin)(2 +0(1)) - (3/7) - (TNB/V.2, )™

Also, by statement 3 of round m — 1,

m—1
m m— 2"’0 1 2"—0
- ) = (200« (242). v

min

)

k=2
Therefore,

mase { o™ & }

< [l |+ sl =t - a5 }

< (250 (ZEA) S V2t (4 Vo) 1) B (PNBE)™

min k=2

) (%.1(1» n (2;@0(1)> SN B/ VE

min k=2

which proves statement 3 of round m. By (BI3), 340) and |S,,| = 0:

Ny, —1
‘fw W) - T(m)‘ﬁ(l—ko(l)) > ag].

2

(1401 Z ]Am>] m>H
< (L+o(1)N ~3f NB - (TNB/ Vi)™ [ Viain - 28/ Vinin
< (VNB/ Vi) - (INB/V)™ !

which proves statement 4 for round m.

Finally, again, statement 5 for round m in Theorem M follows with exactly the

same reasoning as in the proof of statement 3 in Theorem [J] and we omit it for
brevity. O
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