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1. Abstract

In this draft, we first introduce some assumptions on the function class. Then we
propose an algorithm that takes O

(
Nd2 log2 d/σ2

min(A)
)

iterations to initialize the
stepping point xs, from which we can access all N gradient vectors within exactly N
iterations. By storing xs, we only need to initialize for once. Finally, we will show
that a randomly generated function from the function class given in Marsden et.al

satisfies our assumptions with high probability, and σmin(A) = Ω
(√

d
)

indicates

that the query complexity of this algorithm will not exceed O(Nd log2 d), which
approximately equals the optimal rate of optimizing the function class established in
Marsden et.al. Therefore, when designing an algorithm for the function class given
in Marsden et.al, using our algorithm for access to all gradients as a subroutine will
not affect the query complexity.

2. Notations

For vector v, let ‖v‖∞ and ‖v‖ denote ℓ∞ norm and Euclidean norm, respectively.

Let B denote the unit ball in Rd under Euclidean norm. Let v̂ denote v/ ‖v‖. For
matrix M , let σmin(M) and σmax(M) denote its smallest and largest singular value,
respectively. For a finite set S, we use |S| to denote its cardinality, S to denote its
complement. For functionals f(n) and g(n), we denote f(n) & g(n) if f(n) ≥ cg(n),
f(n) . g(n) if f(n) ≤ Cg(n), and f(n) ≍ g(n) if cg(n) ≤ f(n) ≤ Cg(n) for some
positive constants c and C. We denote f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

3. Theories and proofs

Let fv(x) = 〈v, x〉 − γv with {γvi}Ni=1 to be different from each other, and

(3.1) F (x) = max
{

max
i=1...N

fvi(x), d
5‖Ax‖∞ − 1

}
, x ∈ B

where A ∈ Rp×d. Let lF and uF denote the lower and upper bound respectively, of
maxi=1...N fvi(x), x ∈ B. Note that in the special case of Marsden et al. fvi(x) =

〈vi, x〉 − iγ, and lF = −O(1/
√
N). Further, consider

U =
{
x|‖Ax‖∞ ≤ d−5(1 + uF )

}

L =
{
x|‖Ax‖∞ ≤ d−5(1 + lF )

}

Write R(V ) for the short hand of R(v1, . . . , vN ), then it’s easy to see that

L ⊆ R(V ) ⊆ U.
1
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Construct the refined projection algorithm (RP ) as follows:

(3.2) RP (x) =

{
P (P (x)/ ‖P (x)‖) · ‖P (x)‖ x /∈ R(V )

x x ∈ R(V )
,

where P (x) is the result of running the memory-constrainted projection algorithm
starting from x. To put it in words, if x /∈ R(V ), RP projects for two times
with the second time acting on the normalized result of the first projection, and if
x ∈ R(V ), RP does not do anything. It is easy to see that for any vector x ∈ B,
RP (x) ∈ R(V ) ⊆ U , and provided that x /∈ R(V ),

(3.3) ‖A (RP (x))‖∞ ≤ d−5(1 + uF ) ‖P (x)‖ < d−5(1 + uF ) ‖x‖ ,

where the last inequality results from the contraction property of the Projection
Algorithm. ((3.3) might be further improved, but it seems enough for now.)

Let Vmin, Vmax be two constants such that Vmin ≤ mini=1...N ‖vi‖ ≤ maxi=1...N ‖vi‖ ≤
Vmax. Let γmax := maxi=1...N γvi .

Assumption 1. The following assumptions are adopted:

(a) For all i ∈ [N ], |〈RP (vi) , vi〉| ≥ ‖vi‖2 /2; (sorry, but this has to be changed

into ‖vi‖2 · (p/d), which does not affect the results)
(b) For all i, j ∈ [N ] with i 6= j, |〈RP (vi) , vj〉| ≤ β for some apriori upper-

bound β with Nβ = o(1);
(c) σmin(A) = Ω(1);

(d)
(∑N

i=1 (γvi − γmax)
2
)1/2

≤ r for some positive constant r with

2r/Vmin < (1− α)
1 + lF
1 + uF

;

(e) N < d; (this might not be sharp, but enough for the following analysis)

We will show that the function class given in Marsden et. al satisfies Assumption
1 w.h.p in next section. Moreover,

|〈RP (vi), vj −RP (vj)〉| =
∣∣∣〈RP (vi)− ProjKer(A)(vi), vj −RP (vj)〉

∣∣∣

≤
∥∥∥RP (vi)− ProjKer(A)(vi)

∥∥∥ · ‖vj −RP (vj)‖

≤
√
p

σmin(A)
‖A (RP (x))‖∞ · ‖vj −RP (vj)‖

≤
√
p

σmin(A)
d−5(1 + uF ) · 2 ‖vj‖ ,

the last inequality uses (3.3). Therefore, we conclude that

(3.4)

|〈RP (vi), RP (vj)〉| ≤ |〈RP (vi), vj −RP (vj)〉|+ |〈RP (vi) , vj〉|

≤
√
p

σmin(A)
d−5(1 + uF ) · 2 ‖vj‖+ β = (1 + o(1))β.

Lemma 2. If x =
∑N

i=1 λi · RP (vi) satisfies |〈λi · RP (vi), vi〉| ≤ ∆i for some
∆i > 0, i = 1 . . .N , then

‖x‖ ≤ (2 + o(1)) ·
(
∑

i∈G
∆2

i / ‖vi‖2
)1/2

https://yujl1.github.io/files/The_proof_of_the_projection_algorithm-5.pdf
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where G = {i ∈ [N ] : λi 6= 0}.

Proof. Without loss of generality, assume G = [N ]. With (3.4), compute

‖x‖2 =

N∑

i=1

λ2
i ‖RP (vi)‖2 +

∑

i6=j

λiλj〈RP (vi), RP (vj)〉

≤
N∑

i=1

4∆2
i / ‖vi‖4 · ‖RP (vi)‖2 +

∑

i6=j

4
(
∆i/ ‖vi‖2

)(
∆j/ ‖vj‖2

)
(1 + o(1))β

≤
N∑

i=1

4∆2
i / ‖vi‖2 +

∑

i6=j

2(∆2
i / ‖vi‖4 +∆2

j/ ‖vj‖4) · (1 + o(1))β

=
N∑

i=1

4∆2
i / ‖vi‖2 +

N∑

i=1

2(∆2
i / ‖vi‖4) · (1 + o(1))β · (2N − 2)

=

N∑

i=1

4∆2
i / ‖vi‖2 (1 + o(1)).

The second last equality follows from the lower boundedness of ‖vi‖ and the last
equality follows from Nβ = o(1). �

3.1. Initializing the stepping point xs. We would like to explain some intuition
of algorithm 1. Let vik be the gradient at xk. Let T < mini=1...N fvi(x0) be the
target of algorithm in this round. Consider turning the value of fvik (x) into the

target T by moving from the current point xk to x̃k+1 = xk −
(
fvik (xk)− T

)
·

RP (vik) /〈RP (vik) , vik〉. We move every step towards the target value by only
accounting fvik (x) for some ik ∈ [N ], this would introduce a perturbation to the

rest of the components of (3.1), i.e. all fvj (x) with j 6= ik. To be more specific, let
∆k := fvik (xk)− T for all 0 ≤ k ≤ Nm − 1. And the perturbation is

(3.5)

∣∣fvj (x̃k+1)− fvj (xk)
∣∣ = |∆k · 〈RP (vik) , vj〉/〈RP (vik) , vik〉|
≤ |∆k| · 2β/ ‖vik‖2

The last inequality holds with Assumption 1. There is also another type of per-
turbation given x̃k+1 /∈ R(V ), which results from the projection of x̃k+1 to xk+1 =
RP (x̃k+1). To analyze this type of perturbation, we first compute

(3.6)

∥∥A(x̃k+1 − xk)
∥∥
∞

= ‖∆k ·A (RP (vik )) /〈RP (vik ) , vik〉‖∞
≤ 2 |∆k| · ‖A (RP (vik))‖∞ / ‖vik‖2

≤ 2 |∆k| · d−5(1 + uF )/ ‖vik‖2

The last inequality holds by (3.3). Now we can analyze the process of the projection
from x̃k+1 to xk+1 = RP (x̃k+1) given x̃k+1 /∈ R(V ) and xk ∈ R(V ).
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Algorithm 1: Initialize xs

Input: N, β, Vmin, γmax;

1 Initialize x = 0, T = −γmax −
(
2
√
Nβ/V 2

min

)
,m1 =

⌈
− logN/ log(7Nβ/V 2

min)
⌉
,m2 = O(log d);

2 for m = 1, 2, . . . ,m1 do

3 History = ∅;
4 (v, f)← Query(x);

5 while 〈v, x〉 − f /∈ History do

6 add 〈v, x〉 − f to History;

7 x = x− (f − T ) · RP (v) /〈RP (v) , v〉;
8 x = RP (x);

9 (v, f)← Query(x);

10 end

11 T = T − (2
√
Nβ/V 2

min)(7Nβ/V 2
min)

m−1;

12 end

13 x = P (P (x)/ ‖P (x)‖) · ‖P (x)‖;
14 for m = m1 + 1, . . . ,m2 do

15 History = ∅;
16 (v, f)← Query(x);

17 while 〈v, x〉 − f /∈ History do

18 add 〈v, x〉 − f to History;

19 x = x− (f − T ) · RP (v) /〈RP (v) , v〉;
20 x = RP (x);

21 (v, f)← Query(x);

22 end

23 T = T − (2
√
Nβ/V 2

min)(7Nβ/V 2
min)

m−1;

24 end

25 Output x as xs.

Recall that A ∈ Rp×d,

(3.7)

∥∥x̃k+1 − xk+1

∥∥ ≤
√
p

σmin(A)

∥∥A
(
x̃k+1 −RP (x̃k+1)

)∥∥
∞

≤
√
p

σmin(A)

(
2d−5 |∆k|
‖vik‖2

· (1 + uF ) +
∥∥A
(
xk −RP (x̃k+1)

)∥∥
∞

)

≤
√
p

σmin(A)

(
2d−5 |∆k|
‖vik‖2

· (1 + uF ) + 2d−5(1 + uF )

)
,

The second inequality holds with (3.6), and the last inequality holds because
RP (x̃k+1) ∈ R(V ) ⊆ U and xk ∈ R(V ) ⊆ U . Recall that vik is the gradient
at xk. For j ∈ [N ], the perturbation is

(3.8)

∣∣fvj (x̃k+1)− fvj (xk+1)
∣∣ =

∣∣〈vj , x̃k+1 − xk+1〉
∣∣

≤ ‖vj‖ ·
∥∥x̃k+1 − xk+1

∥∥
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Let Nm denote the number of iterations in round m, which indicates that the
gradient at xNm

coincides with the gradient at x0. For some 1 ≤ l ≤ Nm − 1,
consider the perturbation on fvil (x) before observing the gradient vector vil :

∣∣∣fvil (xl)− fvil (x0)
∣∣∣ ≤

l−1∑

k=0

∣∣∣fvil (xk+1)− fvil (xk)
∣∣∣

≤
l−1∑

k=0

∣∣∣fvil (xk+1)− fvil (x̃k+1)
∣∣∣+

l−1∑

k=0

|∆k| · 2β/ ‖vik‖2

The last inequality follows from (3.5). By (3.2), xk+1 6= x̃k+1 if and only if x̃k+1 /∈
R(V ). Let Sm :=

{
0 ≤ k ≤ Nm − 1 : x̃k+1 /∈ R(V )

}
. Combining (3.7) and (3.8)

yields:
(3.9)∣∣∣fvil (xl)− fvil (x0)

∣∣∣

≤
∑

k∈Sm

‖vil‖
√
p

σmin(A)

(
2d−5 |∆k|
‖vik‖2

· (1 + uF ) + 2d−5(1 + uF )

)
+

l−1∑

k=0

|∆k| · 2β/ ‖vik‖2

≤
(
1 +

d−5(1 + uF )Vmax
√
p

βσmin(A)

)Nm−1∑

k=0

|∆k| · 2β/ ‖vik‖2 + |Sm| τ,

with τ :=
Vmax

√
p

σmin(A)2d
−5(1 + uF ) that turns out to be an important threshold. Let

δl := fvil (x0)− T , we can now assert that

(3.10) ∆l ≤ δl +
∣∣∣fvil (xl)− fvil (x0)

∣∣∣ .

Combining this with (3.9), we have

Nm−1∑

k=0

|∆k| ≤
Nm−1∑

k=0

δk +
2Nmβ

V 2
min

Nm−1∑

k=0

|∆k|

+Nm ·
∑

k∈Sm

Vmax
√
p

σmin(A)

(
2d−5 |∆k|

V 2
min

· (1 + uF ) + 2d−5(1 + uF )

)
.

With σmin(A) = Ω(1), d−5N2√p/σmin(A) = o(1) and Nβ = o(1), this immediately
yields

(3.11)

Nm−1∑

k=0

|∆k| ≤ (1 + o(1))

((
Nm−1∑

k=0

δk

)
+Nm · |Sm|

Vmax
√
p

σmin(A)
2d−5(1 + uF )

)

= (1 + o(1))

((
Nm−1∑

k=0

δk

)
+Nm · |Sm| τ

)
.

(3.11) indicates the following crude bound that is also useful

(3.12)
Nm−1∑

k=0

|∆k| ≤ (1 + o(1))

((
Nm−1∑

k=0

δk

)
+N2

m · τ
)

.
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Similar to (3.9), at the end of the whole round the total perturbation to fvil (x) is:

(3.13)
∣∣∣fvil (xNm

)− T
∣∣∣ ≤

Nm−1∑

k=l+1

∣∣∣fvil (xk)− fvil (xk)
∣∣∣

≤
Nm−1∑

k>l

∣∣∣fvil (xk+1)− fvil (x̃k+1)
∣∣∣+

Nm−1∑

k>l

∣∣∣fvil (x̃k+1)− fvil (xk)
∣∣∣

≤
∑

k∈Sm

‖vil‖
√
p

σmin(A)

(
2d−5 |∆k|
‖vik‖2

· (1 + uF ) + 2d−5(1 + uF )

)
+

Nm−1∑

k=l+1

|∆k| · 2β/ ‖vik‖2

≤
(
1 +

d−5(1 + uF )Vmax
√
p

βσmin(A)

)Nm−1∑

k=0

|∆k| · 2β/ ‖vik‖2 + |Sm| τ

The first inequality holds because by construction of the algorithm, fvil (xl+1) = T .

In the above analysis, we have discussed the iterations in round m using vik , xk, x̃k, δk,∆k

and T . Now we need to do induction over m and use v
(m)
ik

, x
(m)
k , x̃k

(m), δ
(m)
k ,∆

(m)
k

and T (m) to denote the corresponding variables in round m.
Briefly recall from algorithm 1: T (m) = T (m−1)−(2

√
Nβ/V 2

min)(7Nβ/V 2
min)

m−2.

Theorem 3. Suppose that Assumption 1 holds. Then for the m’th round (1 ≤
m ≤ m1 < m0 with m0 =

⌊
−5 logN/ log(7Nβ/V 2

min)
⌋
= O(log d)) of Algorithm 1,

the following statements hold:
1. For all l ∈ [Nm],

max
{∥∥∥x̃l

(m)
∥∥∥ ,
∥∥∥x(m)

l

∥∥∥
}
≤
(
2 + o(1)

Vmin

)
r +

(
2 + o(1)

V 3
min

)
·

m∑

k=2

(7Nβ/V 2
min)

k−1 + (m− 1)(2 + o(1))N3/2τ/Vmin

< r · (2 + o′(1))/Vmin

with some o(1) and o′(1) that do not vary for different m.

2. For all k ∈ [Nm],
∣∣∣fvik (x

(m)
Nm

)− T (m)
∣∣∣ <

(√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m−1

3. Nm = N i.e. all gradients will be queried in round m;

Theorem 3 and Theorem 4 corresponds to the two “for loops” as illustrated in
algorithm 1. Between them lies the mandatory projection step, i.e. no matter x /∈
R(V ) or not, we update x← P (P (x)/ ‖P (x)‖) · ‖P (x)‖. This is important because
the distance from B\R(V ) will always be lower bounded by a certain number ever
since the mandatory projection, which indicates that x will not get out of R(V ) for
the rest of the algorithm.

Theorem 4. Suppose that Assumption 1 holds. Then for the m ’th round (m ≥
m1 + 1) of Algorithm 1, the following statements hold:

1.
∑m

j=m1+1

∑Nj−1
k=0

∣∣∣∆(j)
k

∣∣∣ ≤ 3+o(1)

7
√
N
·∑m−m1

i=1

(
7Nβ/V 2

min

)i−1
< 1

2
√
N

with some

o(1) that does not vary for different m.
2. |Sm| = 0, i.e. the Refined Projection algorithm will not be called in round m.
3. For all l ∈ [Nm],

max
{∥∥∥x̃l

(m)
∥∥∥ ,
∥∥∥x(m)

l

∥∥∥
}
≤
(
2 + o1(1)

Vmin

)
r+

(
2 + o(1)

V 3
min

)
·
m∑

k=2

(7Nβ/V 2
min)

k−1 < r·(2+o2(1))/Vmin
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with some o(1), o1(1) and o2(1) that do not vary for different m.

4. For all k ∈ [Nm],
∣∣∣fvik (x

(m)
Nm

)− T (m)
∣∣∣ <

(√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m−1

5. Nm = N i.e. all gradients will be queried in round m;

From statement 2 of Theorem 4 we can see that the Refined Projection algorithm

will not be called once m ≥ m1 + 1, so x̃l
(m) = x

(m)
l for m ≥ m1 + 1 and l ∈ [N ].

Further, from the proof of Theorem 4 we will see that for all l ∈ [N ]

∥∥∥A(x̃l
(m))

∥∥∥
∞
≤
∥∥∥A(x(m1+1)

0 )
∥∥∥
∞

+

m∑

j=m1+1

Nj−1∑

k=0

∥∥∥A(x̃k+1
(j) − x

(j)
k )
∥∥∥
∞

< d−5(1 + lF )(1 − α) +

m∑

j=m1+1

Nj−1∑

k=0

2
∣∣∣∆(j)

k

∣∣∣ · d−5(1 + uF )/V
2
min

< d−5(1 + lF )(1 − α+
1 + uF√

N (1 + lF )V 2
min

) < d−5(1 + lF )(1− α/2)

,

Note that we need
∥∥∥A(x̃l

(m))
∥∥∥
∞
≥ d−5(1 + lF ) if x̃l

(m) ∈ B\R(V ). This gives the

lower bound of the distance rom B\R(V ) uniformly as m→∞.
What we are trying to explain here is that, by statement 4 of Theorem 4, algo-

rithm 1 will get xs arbitrarily close to I(V ) := {x : fv1(x) = fv2(x) = · · · = fvN (x)}
while keeping a constant distance from B\R(V ). Within O(log d) rounds, xs will
end up in a “scenario” that is similar to the case without A because the distance
from I(V ) is very small in comparison with the distance from B\R(V ). At this
point, we can just perform the moves in the direction of vi instead of RP (vi) as
shown in the following algorithm 2 and do not need to worry about getting out of
R(V ). Since it reduces to the case without A, within N iterations, every gradient
vi will be seen. We omit the proof of this claim, which is very similar to the proof
of statement 5 in Theorem 4.

Algorithm 2: Access all gradients

Input: N, xs,m2, T
(m2);

1 Initialize x = xs, T = T (m2) − (2
√
Nβ/V 2

min)(7Nβ/V 2
min)

m2−1;

2 for k = 1, 2, . . . , N do

3 (v, f)← Query(x);

4 x = x− (f − T ) · v/〈v, v〉;
5 Output v;

6 end

Now we turn to analyze the query complexities. The Projection algorithm takes
O
(
d2 log d/σ2

min(A)
)

iterations and there are O(N) calls for the Projection algo-

rithm in each round. With O
(
Nd2 log d/σ2

min(A)
)

iterations in each round and

a total of O(log d) rounds, algorithm 1 takes O
(
Nd2 log2 d/σ2

min(A)
)

iterations.
Though the computation of xs is expensive, we only need to do it once. After that,
we can just do algorithm 2 and see all gradients within only N iterations.
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3.2. Verification of Assumption 1 for the function class given in Marsden

et.al. We would like to point out that by (3.3),

∥∥∥ProjKer(A)(x) −RP (x)
∥∥∥ ≤

√
p

σmin(A)
· d−5(1 + uF ) ‖x‖ ,

and that verifying Assumption 1 with all RP (·) replaced by ProjKer(A)(·) is enough.

Among all the assumptions (a) ∼ (e), the hardest one to be verified is (a), so we
will only verify (a) here for brevity. (This draft has exceeded 20 pages...)

Lemma 5. E

[
〈ProjKer(A) (vi) , vi〉

]
= ‖vi‖2 /2 and 〈ProjKer(A) (vi) , vi〉 ≥ ‖vi‖2 /3

w.h.p.

Proof. Recall that ‖vi‖ = 1 and p = d/2 in Marsden et.al. Let B ∈ R
d
2×d be a

matrix with its rows {bi}d/2i=1 to be an orthonormal basis for Ker(A). Write v as the
shorthand of vi. Then we have

〈ProjKer(A) (v) , v〉 = vTBTBv =

d/2∑

i=1

vT bib
T
i v ≥ 0

with strict inequality when v ∈ KerA⊥. And

E〈ProjKer(A) (v) , v〉 =
d/2∑

i=1

E
(
vT bi

)2
=

d/2∑

i=1

‖bi‖2 /d = 1/2.

We turn to analyze the variance:

(3.14) Var〈ProjKer(A) (v) , v〉 =
d/2∑

i=1

Var
[(
vT bi

)2]
+
∑

i6=j

Cov
[(
vT bi

)2
,
(
vT bj

)2]

For the first term in (3.14),

Var
[(
vT bi

)2]
= E

[(
vT bi

)4]− 1/d2

= (1/d2)E

(
d∑

k=1

skbik

)4

− 1/d2,

where sk ∈ {1,−1} is a binomial random variable with P[sk = 1] = 1/2. Further,

E

(
d∑

k=1

skbik

)4

= E

(
d∑

k=1

s4kb
4
ik

)
+ E

∑

k<l

(
4
2

)
s2kb

2
iks

4
l b

2
il

=

d∑

k=1

b4ik +
∑

k<l

6b2ikb
2
il

< 3

(
d∑

k=1

b4ik + 2
∑

k<l

b2ikb
2
il

)
= 3 ‖bi‖4 = 3
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We have obtained Var
[(
vT bi

)2]
< 2/d2. Now we turn to bound the second term

in (3.14). We will show that the covariance term is always nonpositive. Compute

Cov
[(
vT bi

)2
,
(
vT bj

)2]
= E

[(
vT bi

)2 (
vT bj

)2]− E
(
vT bi

)2
E
(
vT bj

)2

= (1/d2)E



(

d∑

k=1

skbik

)2( d∑

l=1

slbjl

)2

− 1/d2

Further,

E



(

d∑

k=1

skbik

)2( d∑

k=1

skbjk

)2



= E




d∑

k=1

b2ikb
2
jks

4
k +

∑

k<l

(2bikbilsksl) (2bjkbjlsksl) +
∑

k 6=l

(skbik)
2 (slbjl)

2




=

d∑

k=1

b2ikb
2
jk + 4

∑

k<l

bikbilbjkbjl +
∑

k 6=l

b2ikb
2
jl

= ‖bi‖2 ‖bj‖2 + 2
∑

k 6=l

(bikbjk) (bilbjl)

= 1 + 2
∑

k,l

(bikbjk) (bilbjl)− 2
∑

k

b2ikb
2
jk

= 1+ 2〈bi, bj〉2 − 2
∑

k

b2ikb
2
jk

we already know that {bi}d/2i=1 is an orthonormal basis, so 〈bi, bj〉 = 0, and

E



(

d∑

k=1

skbik

)2( d∑

k=1

skbjk

)2

 = 1− 2

∑

k

b2ikb
2
jk < 1

which results in Cov
[(
vT bi

)2
,
(
vT bj

)2]
< 0. Consequently,

Var〈ProjKer(A) (v) , v〉 < 2/d2.

With Chebyshev’s inequality,

P

[
〈ProjKer(A) (v) , v〉 ≥ 1/3

]
≤ 2/d2

(1/2− 1/3)2
= 72/d2.

With union bound,

P

[
max

i=1...N
〈ProjKer(A) (vi) , vi〉 ≥ 1/3

]
≤ 72N/d2 = 1/poly(d).

�

3.3. Proof of Theorems.
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Proof of Theorem 3.

Proof. We first do the case for m = 1.

We start with the first statement. By Lemma 2 and with x
(1)
0 = 0,

(3.15)

∥∥∥x(1)
l

∥∥∥ ≤
∥∥∥∥∥

N1∑

k=1

(
x̃k

(1) − x
(1)
k−1

)∥∥∥∥∥+
∑

k∈S1

∥∥∥x̃k
(1) − x

(1)
k

∥∥∥

≤ (2 + o(1)) ·
(

N1∑

k=1

(∆
(1)
k )2/

∥∥∥v(1)ik

∥∥∥
2
)1/2

+

N1∑

k=1

∥∥∥x̃k
(1) − x

(1)
k

∥∥∥

Combining (3.7) and (3.12) yields
(3.16)
N1∑

k=1

∥∥∥x̃k
(1) − x

(1)
k

∥∥∥

≤
√
p

σmin(A)







N1∑

k=1

2d−5
∣∣∣∆(1)

k

∣∣∣
∥∥∥v(1)ik

∥∥∥
2 · (1 + uF )


+ 2N1d

−5(1 + uF )




≤
√
p

σmin(A)

(
2d−5/V 2

min

)
· (1 + uF )(1 + o(1))

((
N1−1∑

k=0

δ
(1)
k

)
+N2

1 τ

)

+

√
p

σmin(A)
· 2N1d

−5(1 + uF )

=

√
p

σmin(A)

(
2d−5/V 2

min

)
· (1 + uF )(1 + o(1))

(
N1−1∑

k=0

δ
(1)
k

)
+

√
p

σmin(A)
· 2N1d

−5(1 + uF )(1 + o(1))

=

√
p

σmin(A)

(
2d−5

)
· (1 + uF )(1 + o(1))

(
N1 +

N1−1∑

k=0

δ
(1)
k /V 2

min

)

Further, given that δ
(1)
k = −γ

v
(1)
ik

− T (1) and T (1) = −
(
γmax + 2

√
Nβ/V 2

min

)
,

(3.17)
(

N1−1∑

k=0

(δ
(1)
k )2

)1/2

≤
(

N1−1∑

k=0

(
γ
v
(1)
ik

− γmax

))1/2

+2
√
N1Nβ/V 2

min ≤ r+2Nβ/V 2
min,

where the last inequality follows from N1 ≤ N and (d) in Assumption 1. Provided

that
∑N1−1

k=0 δ
(1)
k ≤

√
N
(∑N1−1

k=0 (δ
(1)
k )2

)1/2
<
√
N , from (3.16) we have

N1∑

k=1

∥∥∥x̃k
(1) − x

(1)
k

∥∥∥ = O(
Nd−5√p
σmin(A)

) = o(1).
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Then we turn to bound the first term in (3.15). By (3.9), we have

(3.18)

∣∣∣∣fv(1)
il

(x
(1)
l )− f

v
(1)
il

(x
(1)
0 )

∣∣∣∣

≤ (1 + o(1))

N1−1∑

k=0

∣∣∣∆(1)
k

∣∣∣ · 2β/
∥∥∥v(1)ik

∥∥∥
2

+ |S1| τ

≤ (1 + o(1))

((
N1−1∑

k=0

δ
(1)
k

)
+N2

1 τ

)
· 2β/V 2

min + |S1| τ

≤ (1 + o(1))

(
N1−1∑

k=0

(
δ
(1)
k

)2
)1/2√

N · 2β/V 2
min + o(

√
Nβ)

where the second inequality follows from (3.12) and the last inequality follows from
Cauchy’s inequality and N1 ≤ N . Combining this with (3.10) yields

(
N1∑

k=1

(∆
(1)
k )2/

∥∥∥v(1)ik

∥∥∥
2
)1/2

≤ (1/Vmin)



(

N1−1∑

k=0

(δ
(1)
k )2

)1/2

+

(
N1−1∑

l=0

∣∣∣∣fv(1)
il

(x
(1)
l )− f

v
(1)
il

(x
(1)
0 )

∣∣∣∣
2
)1/2




= (1/Vmin)

(
N1−1∑

k=0

(δ
(1)
k )2

)1/2

· (1 + o(1)) = r · (1 + o(1))/Vmin

,

where the first inequality follows from the triangular inequality, and the last equality
follows from (3.17). Therefore, we finally have

∥∥∥x(1)
l

∥∥∥ ≤ 2 · r · (1 + o(1))/Vmin

for all l. It is easy to see that this holds for x̃l
(1) as well. So the first statement for

m = 1 is proved.
Now we turn to prove the second statement for m = 1. By (3.13), we have

(3.19)

∣∣∣∣fv(1)
il

(x
(1)
N1

)− T (1)

∣∣∣∣

≤ (1 + o(1))

N1−1∑

k=0

∣∣∣∆(1)
k

∣∣∣ · 2β/
∥∥∥v(1)ik

∥∥∥
2

+ |S1| τ

≤ (1 + o(1))

((
N1−1∑

k=0

δ
(1)
k

)
+N2

1 τ

)
· 2β/V 2

min + |S1| τ

≤ (1 + o(1))

(
N1−1∑

k=0

(
δ
(1)
k

)2
)1/2√

N · 2β/V 2
min + o(

√
Nβ) <

√
Nβ/V 2

min

where the second inequality follows from (3.12), the third inequality follows from

Cauchy’s inequality and the last inequality follows from

(∑N1−1
k=0

(
δ
(1)
k

)2)1/2

≤
r < 0.5.

Finally, we begin proving the third statement for m = 1. For the sake of contra-
dictory, assume N1 < N , i.e. some vi is not queried in round 1. Through similar
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analysis as we did in (3.9),
∣∣∣fvi(x

(1)
N1

)− fvi(x
(1)
0 )
∣∣∣

≤
∑

k∈S1

‖vi‖√p
σmin(A)



2d−5

∣∣∣∆(1)
k

∣∣∣
∥∥∥v(1)ik

∥∥∥
2 · (1 + uF ) + 2d−5(1 + uF )


 +

N1−1∑

k=0

∣∣∣∆(1)
k

∣∣∣ · 2β/
∥∥∥v(1)ik

∥∥∥
2

= (1 + o(1))

N1−1∑

k=0

∣∣∣∆(1)
k

∣∣∣ · 2β/V 2
min + |S1| τ

.

We continue to assert that by similar process in (3.19), we have

∣∣∣fvi(x
(1)
N1

)− fvi(x
(1)
0 )
∣∣∣ ≤ (1 + o(1))

N1−1∑

k=0

∣∣∣∆(1)
k

∣∣∣ · 2β/V 2
min + |S1| τ

≤ (1 + o(1))

(
N1−1∑

k=0

(
δ
(1)
k

)2
)1/2√

N · 2β/V 2
min + o(

√
Nβ) <

√
Nβ/V 2

min

where the last inequality follows from

(∑N1−1
k=0

(
δ
(1)
k

)2)1/2

≤ r < 0.5. Since

x
(1)
0 = 0, we have fvi(x

(1)
0 ) = −γvi > −γmax, and

fvi(x
(1)
N1

) > fvi(x
(1)
0 )−

√
Nβ/V 2

min > −γmax −
√
Nβ/V 2

min

With T (1) = −
(
γmax + 2

√
Nβ/V 2

min

)
, consider (3.19) and yield

f
v
(1)
il

(x
(1)
N1

) < T (1) +
√
Nβ/V 2

min = −γmax −
√
Nβ/V 2

min

for all 0 ≤ l ≤ N1 − 1. However, given that vi is not queried, we must have

maxl=0,1...N1−1 fv(1)
il

(x
(1)
N1

) ≥ fvi(x
(1)
N1

), contradictory! Now proof of the third state-

ment is complete.
Now we begin the induction step: Let 2 ≤ m ≤ m0 = −5 logN/ log(7Nβ/V 2

min).
Assume the three statements are true for m − 1, we will prove that they are still
true for m. We start with the first statement. For any l ∈ [Nm], by Lemma 2,

(3.20)

max
{∥∥∥x(m)

l − x
(m)
0

∥∥∥ ,
∥∥∥x̃l

(m) − x
(m)
0

∥∥∥
}
≤
∥∥∥∥∥

Nm∑

k=1

(
x̃k

(m) − x
(m)
k−1

)∥∥∥∥∥+
∑

k∈Sm

∥∥∥x̃k
(m) − x

(m)
k

∥∥∥

≤ (2 + o(1)) ·
(

Nm∑

k=1

(∆
(m)
k )2/

∥∥∥v(m)
ik

∥∥∥
2
)1/2

+
∑

k∈Sm

∥∥∥x̃k
(m) − x

(m)
k

∥∥∥

The equation (3.11) will be useful in the following analysis, so we paste it here for
reference:

Nm−1∑

k=0

|∆k| ≤ (1 + o(1))

((
Nm−1∑

k=0

δk

)
+Nm · |Sm| τ

)
.
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Combining (3.7) and (3.11) yields
(3.21)∑

k∈Sm

∥∥∥x̃k
(m) − x

(m)
k

∥∥∥

≤
√
p

σmin(A)

(
(
2d−5/V 2

min

) ∑

k∈Sm

∣∣∣∆(m)
k

∣∣∣ · (1 + uF ) + 2 |Sm| d−5(1 + uF )

)

≤
√
p

σmin(A)

(
(
2d−5/V 2

min

)
(1 + uF )(1 + o(1))

((
Nm−1∑

k=0

δ
(m)
k

)
+Nm · |Sm| τ

)
+ 2 |Sm| d−5(1 + uF )

)

≤
√
p

σmin(A)
(1 + o(1))

(
(
2d−5/V 2

min

)
(1 + uF )

(
Nm−1∑

k=0

δ
(m)
k

)
+ 2 |Sm| d−5(1 + uF )

)

≤ 2d−5√p
σmin(A)

(1 + o(1))(1 + uF )


(1/V 2

min

)√
Nm

(
Nm−1∑

k=0

(
δ
(m)
k

)2
)1/2

+ |Sm|




From (3.9) we obtain

∣∣∣∣fv(m)
il

(x
(m)
l )− f

v
(1)
il

(x
(m)
0 )

∣∣∣∣

≤
∑

k∈Sm

∥∥∥v(m)
il

∥∥∥√p
σmin(A)



2d−5

∣∣∣∆(m)
k

∣∣∣
∥∥∥v(m)

ik

∥∥∥
2 · (1 + uF ) + 2d−5(1 + uF )


+

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/
∥∥∥v(m)

ik

∥∥∥
2

= (1 + o(1))

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/
∥∥∥v(m)

ik

∥∥∥
2

+ |Sm| τ

≤ (1 + o(1))

((
Nm−1∑

k=0

δ
(m)
k

)
+Nm · |Sm| τ

)
· 2β/V 2

min + |Sm| τ

= (1 + o(1))

((
Nm−1∑

k=0

δ
(m)
k

)
· 2β/V 2

min + |Sm| τ
)

,

where the second inequality follows from (3.11) and the last equality holds because
Nβ = o(1). Note that every “o(1)” does not vary for different m.
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Combining this with (3.10) yields
(3.22)
(

Nm∑

k=1

(∆
(m)
k )2/

∥∥∥v(m)
ik

∥∥∥
2
)1/2

≤ (1/Vmin)



(

Nm−1∑

k=0

(δ
(m)
k )2

)1/2

+

(
Nm−1∑

l=0

∣∣∣∣fv(m)
il

(x
(m)
l )− f

v
(m)
il

(x
(m)
0 )

∣∣∣∣
2
)1/2




= (1/Vmin)

(
Nm−1∑

k=0

(δ
(m)
k )2

)1/2

+ (1/Vmin)
√
Nm(1 + o(1))

·
((

Nm−1∑

k=0

δ
(m)
k

)
· 2β/V 2

min + |Sm| τ
)

= (1/Vmin)

(
Nm−1∑

k=0

(δ
(m)
k )2

)1/2

+ (1/Vmin)
√
Nm(1 + o(1))

·



(

Nm−1∑

k=0

(δ
(m)
k )2

)1/2

· 2
√
Nmβ/V 2

min + |Sm| τ




= (1/Vmin)(1 + o(1))



(

Nm−1∑

k=0

(δ
(m)
k )2

)1/2

+ |Sm| ·
√
Nmτ


 .

Still, each “o(1)” does not vary for different m. Combining (3.22) with (3.20) and
(3.21) yields
(3.23)

max
{∥∥∥x(m)

l − x
(m)
0

∥∥∥ ,
∥∥∥x̃l

(m) − x
(m)
0

∥∥∥
}

≤ (1/Vmin)(2 + o(1))



(

Nm−1∑

k=0

(δ
(m)
k )2

)1/2

+ |Sm| ·
√
Nmτ




= (1/Vmin)(2 + o(1))



(

Nm−1∑

k=0

(
3
√
Nβ · (7Nβ/V 2

min)
m−2/V 2

min

)2
)1/2

+ |Sm| ·
√
Nmτ




≤ (1/Vmin)(2 + o(1))
(
(3/7) · (7Nβ/V 2

min)
m−1 + |Sm| ·

√
Nmτ

)

.

where the first equality holds because, with T (m) = T (m−1)−
(
2
√
Nβ/V 2

min

)
·(7Nβ/

V 2
min)

m−2 and the statement 2 for round m− 1,
(3.24)

δ
(m)
k ≤

∣∣∣T (m−1) − T (m)
∣∣∣+
∣∣∣∣fv(m)

ik

(x
(m−1)
Nm−1

)− T (m−1)

∣∣∣∣

≤
(
2
√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m−2 +

(√
Nβ/V 2

min

)
·
(
7Nβ/V 2

min

)m−2

=3
√
Nβ · (7Nβ/V 2

min)
m−2/V 2

min

for all 0 ≤ k ≤ Nm − 1. Note that in (3.24), the bound on

∣∣∣∣fv(m)
ik

(x
(m)
0 )− T (m−1)

∣∣∣∣
also relies on statement 3 for round m − 1, which guarantees that v

(m)
ik

will be
queried in round m− 1.
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Given the first statement for m− 1 hold,

∥∥∥x(m)
0

∥∥∥ =
∥∥∥x(m−1)

Nm−1

∥∥∥

≤ (
2 + o(1)

Vmin
)r + (

2 + o(1)

V 3
min

) ·
m−1∑

k=2

(7Nβ/V 2
min)

k−1 + (m− 2)(2 + o(1))N3/2τ/Vmin

Note that for m = 2, take
∑m−1

k=2 (7Nβ)k−1 := 0. And
(3.25)

max
{∥∥∥x(m)

l

∥∥∥ ,
∥∥∥x̃l

(m)
∥∥∥
}
≤
∥∥∥x(m)

0

∥∥∥+max
{∥∥∥x(m)

l − x
(m)
0

∥∥∥ ,
∥∥∥x̃l

(m) − x
(m)
0

∥∥∥
}

≤ (
2 + o(1)

Vmin
)r + (

2 + o(1)

V 3
min

) ·
m−1∑

k=2

(7Nβ/V 2
min)

k−1 + (
2 + o(1)

V 3
min

) · 3
7
(7Nβ/V 2

min)
m−1

+ (2 + o(1))(m− 2 + 1) ·N3/2τ/Vmin

< (
2 + o(1)

Vmin
)r + (

2 + o(1)

V 3
min

) ·
m∑

k=2

(7Nβ/V 2
min)

k−1

+ (2 + o(1))(m− 1)N3/2τ/Vmin.

With m ≤ −5 logN/ log(7Nβ/V 2
min) = O(log d) , we have

(2 + o(1))(m− 2)N3/2τ/Vmin ≤ (2 + o(1)) log d ·N3/2τ/Vmin := o′′(1).

Since o(1) does not vary for different m, o′′(1) does not vary for different m, either.
Therefore, statement 1 is proved for round m:

max
{∥∥∥x(m)

l

∥∥∥ ,
∥∥∥x̃l

(m)
∥∥∥
}
< (

2 + o(1)

Vmin
)r + (

2 + o(1)

V 3
min

) ·
m∑

k=2

(7Nβ/V 2
min)

k−1 + o′′(1)

< r · (2 + o′(1))/Vmin

Before proving statement 2, we need to estimate |Sm|. Since (d) in Assumption 1,
for d sufficiently large (uniform in m),

max
{∥∥∥x(m)

l

∥∥∥ ,
∥∥∥x̃l

(m)
∥∥∥
}
< (1− α)

1 + lF
1 + uF

.

If x
(m)
l 6= x̃l

(m), then x
(m)
l /∈ R(V ). And by (3.3), we have

(3.26)
∥∥∥Ax(m)

l

∥∥∥
∞
≤ d−5(1 + uF )

∥∥∥x̃l
(m)
∥∥∥ < d−5(1 + lF )(1 − α),

which shows that once finished running the Refined Projection Algorithm, the cur-
rent point will be of at least some distance away from R(V ). And the projection
will not be called until this distance is covered up. To be more specific, given (3.6),

l+l′−1∑

k=l

∥∥∥A(x̃k+1
(m) − x

(m)
k )

∥∥∥
∞
≤

l+l′−1∑

k=l

2
∣∣∣∆(m)

k

∣∣∣ · d−5(1 + uF )/V
2
min.
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Therefore,

∥∥∥A(x̃l+l′
(m)

)
∥∥∥
∞
≤
∥∥∥A(x(m)

l )
∥∥∥
∞

+

l+l′−1∑

k=l

2
∣∣∣∆(m)

k

∣∣∣ · d−5(1 + uF )/V
2
min

< d−5(1 + lF )(1 − α) +

l+l′−1∑

k=l

2
∣∣∣∆(m)

k

∣∣∣ · d−5(1 + uF )/V
2
min

,

which implies that if x̃l+l′
(m)

/∈ R(V ) and has to be projected, then

(3.27)

l+l′−1∑

k=l

2
∣∣∣∆(m)

k

∣∣∣ · (1 + uF )/V
2
min > (1 + lF )α.

Recall that Sm :=
{
0 ≤ k ≤ Nm − 1 : x̃k+1

(m)
/∈ R(V )

}
denotes the number of call

for the Refined Projection Algorithm in round m. With the intuition demonstrated
above, the following holds:

(3.28) |Sm| ≤ 1 +

(
Nm−1∑

k=0

2
∣∣∣∆(m)

k

∣∣∣ · (1 + uF )/V
2
min

)
/ ((1 + lF )α) .

Now we can elaborate our analysis with this bound on |Sm|. Recall (3.11), we can
easily obtain

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ ≤ (1 + o(1))

((
Nm−1∑

k=0

δ
(m)
k

)
+Nm · |Sm| τ

)

≤ (1 + o(1))

(
Nm−1∑

k=0

δ
(m)
k +Nmτ

)
+ o(1) ·

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣
,

which immediately implies

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ ≤ (1 + o(1))

(
Nm−1∑

k=0

δ
(m)
k +Nmτ

)
.

Now we turn to prove the second statement for m. By (3.13), we have

(3.29)

∣∣∣∣fv(m)
il

(x
(m)
Nm

)− T (m)

∣∣∣∣

≤ (1 + o(1))

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/
∥∥∥v(m)

ik

∥∥∥
2

+ |Sm| τ

≤ (1 + o(1))

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/
∥∥∥v(m)

ik

∥∥∥
2

+ o(β) ·
Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣+ τ

≤ (1 + o(1))

((
Nm−1∑

k=0

δ
(m)
k

)
+Nmτ

)
· 2β/V 2

min + τ

≤ (1 + o(1))
(
Nm · 3

√
Nβ · (7Nβ/V 2

min)
m−2/V 2

min +Nmτ
)
· 2β/V 2

min + τ

≤ (1 + o(1)) · (6/7) ·
√
Nβ · (7Nβ/V 2

min)
m−1/V 2

min + (1 + o(1))τ

< (13/14)
√
Nβ · (7Nβ/V 2

min)
m−1/V 2

min <
√
Nβ · (7Nβ/V 2

min)
m−1/V 2

min
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where the second inequality uses (3.28), the third inequality follows from (3.11),
the fourth inequality follows from (3.24), the fifth inequality holds given Nβ = o(1)
and the second last inequality follows given m ≤ m0.

Finally, we begin proving the third statement. For the sake of contradictory,
assume Nm < N , i.e. some vi is not queried in round m. Through similar analysis
as we did in (3.9),

∣∣∣fvi(x
(m)
Nm

)− fvi(x
(m)
0 )

∣∣∣

≤
∑

k∈Sm

‖vi‖√p
σmin(A)



2d−5

∣∣∣∆(m)
k

∣∣∣
∥∥∥v(m)

ik

∥∥∥
2 · (1 + uF ) + 2d−5(1 + uF )


+

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/
∥∥∥v(m)

ik

∥∥∥
2

= (1 + o(1))

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/V 2
min + |Sm| τ.

We continue to assert that by similar process in (3.29), we have

∣∣∣fvi(x
(m)
Nm

)− fvi(x
(m)
0 )

∣∣∣ ≤ (1 + o(1))

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/V 2
min + |Sm| τ

<
√
Nβ · (7Nβ/V 2

min)
m−1/V 2

min

Since statement 3 hold for m− 1, vi must have been queried in round m− 1. Then

with statement 2 for m − 1, fvi(x
(m)
0 ) = fvi(x

(m−1)
Nm−1

) > T (m−1) −
(√

Nβ/V 2
min

)
·

(7Nβ/V 2
min)

m−2, and

fvi(x
(m)
Nm

) > fvi(x
(m)
0 )−

(√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m−1

> T (m−1) − (1 + 7Nβ/V 2
min)

(√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m−2

With T (m) = T (m−1) −
(
2
√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m−2, consider (3.29) and yield

f
v
(m)
il

(x
(m)
Nm

) < T (m) +
(√

Nβ/V 2
min

)
· (7Nβ/V 2

min)
m−1

= T (m−1) − (2− 7Nβ/V 2
min)

(√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m−2 < fvi(x

(m)
Nm

)

for all 0 ≤ l ≤ Nm − 1. However, given that vi is not queried, we must have

maxl=0,1...Nm−1 fv(m)
il

(x
(m)
Nm

) ≥ fvi(x
(m)
Nm

), contradictory! Now proof of the third

statement in round m is complete. �

Let m1 :=
⌈
− logN/ log(7Nβ/V 2

min)
⌉
. We would like to recall that the pro-

posed algorithm 1 is designed to do a mandatory Projection at the end of round

m1 no matter x
(m1)
N /∈ R(V ) or not, i.e. x

(m1+1)
0 = P

(
P (x

(m1)
N )/

∥∥∥P (x
(m1)
N )

∥∥∥
)
·∥∥∥P (x

(m1)
N )

∥∥∥. And by (3.7) and (3.8), for all j ∈ [N ], the perturbation caused by
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this mandatory projection is
(3.30)

∣∣∣fvj
(
x
(m1)
N

)
− fvj

(
x
(m1+1)
0

)∣∣∣ ≤
Vmax

√
p

σmin(A)



2d−5

∣∣∣∆(m1)
N−1

∣∣∣
V 2
min

· (1 + uF ) + 2d−5(1 + uF )




= τ
(
1 +

∣∣∣∆(m1)
N−1

∣∣∣ /V 2
min

)

To estimate ∆
(m1)
N−1, combining (3.12), (3.9) and (3.10) yields

∣∣∣∆(m1)
N−1

∣∣∣ ≤ δ
(m1)
N−1 + (1 + o(1)) · 2β/V 2

min ·
(

N−1∑

k=0

∣∣∣δ(m1)
k

∣∣∣+N2τ

)
+Nτ

Recall the bound established in (3.24) we have
∣∣∣∆(m1)

N−1

∣∣∣ ≤ (1+o(1))3
√
Nβ·(7Nβ/V 2

min)
m1−2/V 2

min+(1+o(1))·2β/V 2
min·N2τ+Nτ = o(1).

Plugging this into (3.30) yields

(3.31)
∣∣∣fvj

(
x
(m1)
N

)
− fvj

(
x
(m1+1)
0

)∣∣∣ ≤ (1 + o(1))τ

Since m1 < m0, with Theorem 3, we have for all i ∈ [N ]:
∣∣∣fvi(x

(m1)
N )− T (m1)

∣∣∣ <
(√

Nβ/V 2
min

)
· (7Nβ/V 2

min)
m1−1 ≍ N−3/2.

Moreover, if we take a closer look, we will see that in the development of (3.29),
∣∣∣fvi(x

(m1)
N )− T (m1)

∣∣∣ < (13/14) ·
(√

Nβ/V 2
min

)
· (7Nβ/V 2

min)
m1−1,

we already know that τ = o
(
N−3/2

)
, which, combined with (3.31), results in

(3.32)
∣∣∣fvj

(
x
(m1+1)
0

)
− T (m1)

∣∣∣ <
(√

Nβ/V 2
min

)
· (7Nβ/V 2

min)
m1−1.

Now we turn to bound
∥∥∥x(m1+1)

0

∥∥∥:

(3.33)

∥∥∥x(m1+1)
0

∥∥∥ =
∥∥∥P
(
P (x

(m1)
N )/

∥∥∥P (x
(m1)
N )

∥∥∥
)∥∥∥ ·

∥∥∥P (x
(m1)
N )

∥∥∥

≤
∥∥∥P (x

(m1)
N )/

∥∥∥P (x
(m1)
N )

∥∥∥
∥∥∥ ·
∥∥∥P (x

(m1)
N )

∥∥∥ ≤
∥∥∥x(m1)

N

∥∥∥ ,

where the last two inequalities hold by the contraction property of the Projection
Algorithm.

Proof of Theorem 4.

Proof. We will first prove statement 1 ∼ 5 in order for m = m1 +1. By (3.3), since

x
(m1+1)
0 = P

(
P (x

(m1)
N )/

∥∥∥P (x
(m1)
N )

∥∥∥
)
·
∥∥∥P (x

(m1)
N )

∥∥∥, we have

(3.34)
∥∥∥Ax(m1+1)

0

∥∥∥
∞
≤ d−5(1 + uF )

∥∥∥x(m1)
N

∥∥∥ < d−5(1 + lF )(1− α)

Given (3.34) and with the intuition demonstrated in (3.27), we can get a much
better bound than (3.28), namely,

(3.35) |Sm1+1| ≤





Nm1+1−1∑

k=0

2
∣∣∣∆(m1+1)

k

∣∣∣ · (1 + uF )/V
2
min


 / ((1 + lF )α)

 .
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Now we can elaborate our analysis with this bound on |Sm1+1|. Recall (3.11), we
can easily obtain

Nm1+1−1∑

k=0

∣∣∣∆(m1+1)
k

∣∣∣ ≤ (1 + o(1))






Nm1+1−1∑

k=0

δ
(m1+1)
k


+Nm1+1 · |Sm1+1| τ




≤ (1 + o(1))




Nm1+1−1∑

k=0

δ
(m1+1)
k


 + o(1) ·

Nm1+1−1∑

k=0

∣∣∣∆(m1+1)
k

∣∣∣

,

which immediately implies

Nm1+1−1∑

k=0

∣∣∣∆(m1+1)
k

∣∣∣ ≤ (1 + o(1))

Nm1+1−1∑

k=0

δ
(m1+1)
k

with some o(1) that doesn’t vary for different m. Also, by (3.32),

δ
(m1+1)
k ≤

∣∣∣T (m1) − T (m1+1)
∣∣∣+
∣∣∣∣fv(m1+1)

ik

(x
(m1)
Nm1

)− T (m1)

∣∣∣∣

≤
(
2
√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m1−1 +

(√
Nβ/V 2

min

)
·
(
7Nβ/V 2

min

)m1−1

=3
√
Nβ · (7Nβ/V 2

min)
m1−1/V 2

min.

Therefore,
(3.36)

Nm1+1−1∑

k=0

∣∣∣∆(m1+1)
k

∣∣∣ ≤ (1 + o(1))N · 3
√
Nβ · (7Nβ/V 2

min)
m1−1/V 2

min =
(3 + o(1))

7
√
N

and statement 1 for m = m1 + 1 is proved. Since (3+o(1))

7
√
N

<= o(1), (3.35) implies

that |Sm1+1| = 0, which proves statement 2.
By (3.23), for all l ∈ [Nm1+1]

max
{∥∥∥x(m1+1)

l − x
(m1+1)
0

∥∥∥ ,
∥∥∥x̃l

(m1+1) − x
(m1+1)
0

∥∥∥
}

≤ (1/Vmin)(2 + o(1))
(
(3/7) · (7Nβ/V 2

min)
m1 + |Sm1+1| ·

√
Nm1+1τ

)

= (1/Vmin)(2 + o(1)) · (3/7) · (7Nβ/V 2
min)

m1

Also, by (3.33) and statement 1 of Theorem 3,

∥∥∥x(m1+1)
0

∥∥∥ ≤
∥∥∥x(m1)

N

∥∥∥

≤
(
2 + o(1)

Vmin

)
r +

(
2 + o(1)

V 3
min

)
·
m1∑

k=2

(7Nβ/V 2
min)

k−1 + (m1 − 1)(2 + o(1))N3/2τ/Vmin

=

(
2 + om1(1)

Vmin

)
r +

(
2 + o(1)

V 3
min

)
·
m1∑

k=2

(7Nβ/V 2
min)

k−1
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The last equality holds because m1 = O(log d). Therefore,

max
{∥∥∥x(m1+1)

l

∥∥∥ ,
∥∥∥x̃l

(m1+1)
∥∥∥
}

≤
(
2 + o1(1)

Vmin

)
r +

(
2 + o(1)

V 3
min

)
·
m1∑

k=2

(7Nβ/V 2
min)

k−1 + (1/Vmin)(2 + o(1)) · (3/7) · (7Nβ/V 2
min)

m1

<

(
2 + o1(1)

Vmin

)
r +

(
2 + o(1)

V 3
min

)
·
m1+1∑

k=2

(7Nβ/V 2
min)

k−1

which proves statement 3.
By (3.13), (3.36) and |Sm1+1| = 0:

(3.37)
∣∣∣∣fv(m1+1)

il

(x
(m1+1)
Nm1+1

)− T (m1+1)

∣∣∣∣ ≤ (1 + o(1))

Nm1+1−1∑

k=0

∣∣∣∆(m1+1)
k

∣∣∣ · 2β/
∥∥∥v(m1+1)

ik

∥∥∥
2

+ |Sm1+1| τ

= (1 + o(1))

Nm1+1−1∑

k=0

∣∣∣∆(m1+1)
k

∣∣∣ · 2β/
∥∥∥v(m1+1)

ik

∥∥∥
2

≤ (1 + o(1))N · 3
√
Nβ · (7Nβ/V 2

min)
m1−1/V 2

min · 2β/V 2
min

<
(√

Nβ/V 2
min

)
· (7Nβ/V 2

min)
m1

which proves statement 4.
Finally, statement 5 in Theorem 4 follows with exactly the same reasoning as

in the proof of statement 3 in Theorem 3 and we will only state the steps without
detailed explanation: Assume some vj is not queried in round m1 + 1, then
∣∣∣fvj (x

(m1+1)
Nm1+1

)− T (m1)
∣∣∣ <

(√
Nβ/V 2

min

)
·(7Nβ/V 2

min)
m1+

(√
Nβ/V 2

min

)
·(7Nβ/V 2

min)
m1−1

where the second term is caused by (3.32). With T (m1+1) = T (m1)−
(
2
√
Nβ/V 2

min

)
·

(7Nβ/V 2
min)

m1−1 and (3.37),

f
v
(m1+1)
il

(x
(m1+1)
Nm1+1

) < T (m1)−
(
2
√
Nβ/V 2

min

)
·(7Nβ/V 2

min)
m1−1+

(√
Nβ/V 2

min

)
·(7Nβ/V 2

min)
m1

which contradicts with

fvj (x
(m1+1)
Nm1+1

) > T (m1)−
(√

Nβ/V 2
min

)
·(7Nβ/V 2

min)
m1−1−

(√
Nβ/V 2

min

)
·(7Nβ/V 2

min)
m1 .

Now we begin the induction step: Let m ≥ m1 + 2. Assume all five statements
are true for m1 + 1,m1 + 2, . . . ,m− 1, we will prove that they will still be true for
m. Since we already know statement 1 holds for m− 1,

m−1∑

j=m1+1

Nj−1∑

k=0

∣∣∣∆(j)
k

∣∣∣ ≤ 3 + o(1)

7
√
N
·
m−1−m1∑

i=1

(
7Nβ/V 2

min

)i−1
<

1

2
√
N

.

Then, similar to the intuition of (3.35), we have

(3.38) |Sm| ≤
⌊((

1

2
√
N

+

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣
)
· (1 + uF )/V

2
min

)
/ ((1 + lF )α)

⌋
.
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Now we can elaborate our analysis with this bound on |Sm|. Recall (3.11), we can
easily obtain

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ ≤ (1 + o(1))

((
Nm−1∑

k=0

δ
(m)
k

)
+Nm · |Sm| τ

)

≤ (1 + o(1))

(
Nm−1∑

k=0

δ
(m)
k

)
+ o(1) ·

(
1

2
√
N

+

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣
),

which immediately implies

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ ≤ (1 + o(1))

(
Nm−1∑

k=0

δ
(m)
k

)
+ o(1)

with some o(1) that doesn’t vary for different m. Also, by (3.32),

δ
(m)
k ≤

∣∣∣T (m−1) − T (m)
∣∣∣+
∣∣∣∣fv(m)

ik

(x
(m−1)
Nm−1

)− T (m−1)

∣∣∣∣

≤
(
2
√
Nβ/V 2

min

)
· (7Nβ/V 2

min)
m−2 +

(√
Nβ/V 2

min

)
·
(
7Nβ/V 2

min

)m−2

=3
√
Nβ · (7Nβ/V 2

min)
m−2/V 2

min.

Therefore,

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ ≤ (1 + o(1))N · 3
√
Nβ · (7Nβ/V 2

min)
m−2/V 2

min +
o(1)

2
√
N

=
(3 + o(1))

7

√
N · (7Nβ/V 2

min)
m−m1−1 · (7Nβ/V 2

min)
m1 +

o(1)

2
√
N

<
(3 + o(1))

7
√
N

· (7Nβ/V 2
min)

m−m1−1 +
o(1)

2
√
N

where the last inequality follows because m1 ≥ − logN/ log(7Nβ/V 2
min). Combin-

ing this with (3.38) yields
(3.39)

|Sm| ≤
(
1 + o(1)

2
√
N

+
3 + o(1)

7
√
N
· (7Nβ/V 2

min)
m−m1−1

)
· 1 + uF

(1 + lF )αV 2
min

= o(1) < 1.

Here we still would like to point out that every “o(1)” does not vary for different
m, so the last inequality holds uniformly for all m ≥ m1 + 2 with sufficiently large
d. (3.39) immediately implies statement 2.

Again, with (3.11),

(3.40)

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ ≤ (1 + o(1))

((
Nm−1∑

k=0

δ
(m)
k

)
+Nm · |Sm| τ

)

= (1 + o(1))

(
Nm−1∑

k=0

δ
(m)
k

)
≤ 3 + o(1)

7
√
N
· (7Nβ/V 2

min)
m−m1−1.
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Then,

m∑

j=m1+1

Nj−1∑

k=0

∣∣∣∆(j)
k

∣∣∣ =
m−1∑

j=m1+1

Nj−1∑

k=0

∣∣∣∆(j)
k

∣∣∣+
Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣

≤ 3 + o(1)

7
√
N
·
m−1−m1∑

i=1

(
7Nβ/V 2

min

)i−1
+

3 + o(1)

7
√
N
· (7Nβ/V 2

min)
m−m1−1

=
3 + o(1)

7
√
N
·
m−m1∑

i=1

(
7Nβ/V 2

min

)i−1
.

which proves statement 1 for round m.
By (3.23), for all l ∈ [Nm]

max
{∥∥∥x(m)

l − x
(m)
0

∥∥∥ ,
∥∥∥x̃l

(m) − x
(m)
0

∥∥∥
}

≤ (1/Vmin)(2 + o(1))
(
(3/7) · (7Nβ/V 2

min)
m−1 + |Sm| ·

√
Nmτ

)

= (1/Vmin)(2 + o(1)) · (3/7) · (7Nβ/V 2
min)

m−1

Also, by statement 3 of round m− 1,

∥∥∥x(m)
0

∥∥∥ =
∥∥∥x(m−1)

N

∥∥∥ ≤
(
2 + o1(1)

Vmin

)
r +

(
2 + o(1)

V 3
min

)
·
m−1∑

k=2

(7Nβ/V 2
min)

k−1

Therefore,

max
{∥∥∥x(m)

l

∥∥∥ ,
∥∥∥x̃l

(m)
∥∥∥
}

≤
∥∥∥x(m)

0

∥∥∥+max
{∥∥∥x(m)

l − x
(m)
0

∥∥∥ ,
∥∥∥x̃l

(m) − x
(m)
0

∥∥∥
}

≤
(
2 + o1(1)

Vmin

)
r +

(
2 + o(1)

V 3
min

)
·
m−1∑

k=2

(7Nβ/V 2
min)

k−1 + (1/Vmin)(2 + o(1)) · (3/7) · (7Nβ/V 2
min)

m−1

<

(
2 + o1(1)

Vmin

)
r +

(
2 + o(1)

V 3
min

)
·

m∑

k=2

(7Nβ/V 2
min)

k−1

which proves statement 3 of round m. By (3.13), (3.40) and |Sm| = 0:
∣∣∣∣fv(m)

il

(x
(m)
Nm

)− T (m)

∣∣∣∣ ≤ (1 + o(1))

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/
∥∥∥v(m)

ik

∥∥∥
2

+ |Sm| τ

= (1 + o(1))

Nm−1∑

k=0

∣∣∣∆(m)
k

∣∣∣ · 2β/
∥∥∥v(m)

ik

∥∥∥
2

≤ (1 + o(1))N · 3
√
Nβ · (7Nβ/V 2

min)
m−2/V 2

min · 2β/V 2
min

<
(√

Nβ/V 2
min

)
· (7Nβ/V 2

min)
m−1

which proves statement 4 for round m.
Finally, again, statement 5 for round m in Theorem 4 follows with exactly the

same reasoning as in the proof of statement 3 in Theorem 3 and we omit it for
brevity. �
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