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I. INTRODUCTION

XXX The estimation of covariance matrices is a funda-

mental problem in modern multivariate data analysis. It has

broad applications in many fields such as statistics [1], biology

[2], finance [3], [4], [5], signal processing [6], [7], [8], [9],

[10], machine learning [11], etc. For example, many dimension

reduction techniques, including principal component analysis

[12] and linear and quadratic discriminant analysis [13], re-

quire the estimation of a covariance matrix in advance from

a given collection of data points. Other prominent examples

include portfolio optimization [14] and beamformer design

[15]. When the dimension of the covariance matrix becomes

large, the estimation problem is generally challenging. It is

well-known that when the dimension is larger than the sample

size, the commonly used sample covariance matrix (SCM) is

singular, which may cause trouble in many applications. In

addition, the number of parameters to be estimated grows

quadratically with the dimension of the covariance matrix.

Therefore, the problem of large (or high-dimensional) co-

variance matrix estimation has received considerable attention

over the past decade.

In order to estimate large covariance matrices effectively,

one of the most popular assumptions is sparsity, i.e., a ma-

jority of the off-diagonal elements are nearly zeros, which

largely reduces the number of parameters to be estimated. The

sparsity assumption is reasonable in real applications [16].

A commonly used method for estimating sparse covariance

matrices is called thresholding [17], [18], [19], which is to

set small elements in the SCM to zeros. Some statistical

properties of the thresholding covariance estimator, including

minimax lower bounds [20] and rates of convergence [21],

have been established in the literature. The thresholding co-

variance estimator is proved only to be asymptotically positive

definite [17], [18]. However, in practice it is more desirable to

require the positive definiteness of the estimator under finite

samples. Besides the thresholding methods for general sparse

covariance matrix estimation, when covariances have sparsely

banded structures, specialized covariance estimation methods

include banding [22] and tapering [23], [24], [25] have been

proposed. Nevertheless, this paper will focus on the general

sparse cases.

Theoretical properties of large covariance estimators dis-

cussed in the literature often hinge heavily on the Gaussian or

sub-Gaussian1 assumption ([26]). See, for example, Corollary

8 of [26]. Such an assumption is typically very restrictive

in practice. For example, a recent fMRI study by Eklund

et al. (2016) reported that most of the common software

packages for fMRI analysis, such as SPM and FSL, can

result in inflated false-positive rates up to 70% under 5%

nominal levels, and questioned a number of fMRI studies

among approximately 40,000 studies according to PubMed.

Their results suggested that The principal cause of the invalid

cluster inferences is spatial autocorrelation functions that do

not follow the assumed Gaussian shape. Eklund et al. (2016)

plotted the empirical versus theoretical spatial autocorrelation

functions for several datasets. The empirical autocorrelation

functions have much heavier tails compared to their theoretical

counterparts under the commonly used assumption of a Gaus-

sian random field, which causes the failure of fMRI inferences.

Similar phenomenon has also been discovered in genomic

studies (Liu et al., 2003; Purdom and Holmes, 2005) and in

quantitative finance (Cont, 2001). It is therefore imperative to

develop robust inferential procedures that are less sensitive to

the distributional assumptions.

(Or we substitute the previous paragraph with the follow-

ing explanation from Adaptive Huber Regression) The sub-

Gaussian tails requirement, albeit being convenient for theo-

retical analysis, is not realistic in many practical applications

since modern data are often collected with low quality. For

example, a recent study on functional magnetic resonance

imaging (fMRI) (Eklund, Nichols and Knutsson, 2016) shows

that the principal cause of invalid fMRI inferences is that the

data do not follow the assumed Gaussian shape, which speaks

to the need of validating the statistical methods being used

in the field of neuroimaging. In a microarray data example

considered in Wang, Peng and Li (2015), it is observed that

some gene expression levels have heavy tails as their kurtosises

are much larger than 3, despite of the normalization methods

used. In finance, the power-law nature of the distribution of

returns has been validated as a stylized fact (Cont, 2001). Fan

et al. (2016) argued that heavy-tailed distribution is a stylized

feature for high dimensional data and proposed a shrinkage

principle to attenuate the influence of outliers. Standard statis-

tical procedures that are based on the method of least squares

often behave poorly in the presence of heavy-tailed data2

(Catoni, 2012). It is therefore of ever-increasing interest to

develop new statistical methods that are robust against heavy-

tailed errors and other potential forms of contamination.)

There are two ways to adjust to heavy-tailed data in ex-

isting literature: [27] assumes the polynomial-tail condition

and proposes a quadratic loss ℓ1 penalized robust covariance

estimator, and methods summarized in [28] that assume finite

fourth moments condition and use robust (Huber) loss in their

formulations. However, neither of them achieves the oracle rate
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in [26]. It is then imperative to find a formulation that achieves

the oracle rate in the presence of heavy-tailedness. Implement-

ing the robust loss with ℓ1 penality, however, fails to boost the

performance significantly as we will demonstrate via (example

or numerical analysis?). Given that the existing literature that

achieves the oracle rate i.e.[26] possesses concave penality, we

propose a formulation with Huber loss and concave penality.

Under this formulation, the resulting estimator assumes only

the polynomial-tail condition and achieves the oracle rate.

A. Notations

The following notation is adopted. Standard lower-case or

upper-case letters stand for scalars and boldface lower-case

(upper-case) letters denote vectors (matrices). Both Xij and

[X]ij denote the (i, j)-th entry of the matrix X. R+ denotes

the set of non-negative real numbers, Rm×n denotes the set of

real m×n matrices. 0 and 1 stand for the all-zero and all-one

vector/matrix, respectively. I stands for the identity matrix.

X ≻ 0 (X � 0) means X is positive definite (semidefinite).

x ≥ 0 denotes each element of x is non-negative.

Let ‖X‖∞ = maxk,l |Xkl| and ‖X‖min = mink,l |Xkl|. Let

‖X‖1,off =
∑

k 6=l |Xkl| denote the sum-absolute-value norm

for all entries and for off-diagonals. We write [d] for the set

{1, 2, . . . , d} and ⌊x⌋ for the largest integer not exceeding x.

For an index set E , we use |E| to denote its cardinality, E to

denote its complement. Use XE to denote the matrix whose

(i, j)-th entry is equal to Xij if (i, j) ∈ E , and zero otherwise.

Let A ◦ B denote the Hadamard product between matrix A

and B. Let ∂f(·) denote the subdifferential of a multivariate

function f .

Let sgn(x) denote the sign of variable x, i.e., sgn(x) =
x/ |x|. For functions f(n) and g(n), we denote f(n) > g(n)
if f(n) ≤ Cg(n), f(n) ? g(n) if f(n) ≥ cg(n) and f(n) ≍
g(n) if cg(n) ≤ f(n) ≤ Cg(n) for some positive constants c
and C.

II. PROBLEM FORMULATION

Given samples xi, i = 1, . . . , n from a heavy-tailed distri-

bution with covariance matrix Σ∗, let N := n(n − 1)/2 and

define the paired data

{y1,y2, . . . ,yN} = {x1 − x2,x1 − x3, . . . ,xn−1 − xn} ,

which are identically distributed from a random vector y with

mean 0 and covariance matrix cov(y) = 2Σ∗. Let

Lα(Σ) :=
∑

k,ℓ

1

N

∑

1≤i<j≤n

ρα(Σkℓ − (xik − xjk)(xil − xjl)/2)

=
∑

k,ℓ

1

N

N∑

m=1

ρα(Σkℓ − ymkymℓ/2)

with ρα : R → R+ a Huber loss function defined as

ρα(x) =

{
x2/2 if |x| ≤ α,

α |x| − α2/2 if |x| > α,
(1)

where α > 0 is a robustification parameter. Compared with

the squared error loss, large values of x are down-weighted

in the Huber loss, yielding robustness. Generally speaking,

minimizing Huber’s loss produces a biased estimator of the

mean, and parameter α can be chosen to control the bias.

In other words, α quantifies the tradeoff between bias and

robustness. As observed by Sun, Zhou and Fan (2018), in

order to achieve an optimal tradeoff, α should adapt to the

sample size, the dimension, and the noise level.

We will consider the following covariance estimation prob-

lem

min
Σ≻0

{
Lα(Σ)− τ log detΣ+

∑

k 6=ℓ

pλ(|Σkℓ|)
}
, (2)

where τ log det is a positive-definiteness penalty function with

a regularization parameter τ > 0 and pλ : R+ → R+ is a

non-convex penalty function with a regularization parameter

λ > 0. We consider a class of non-convex penalty functions

pλ(·) satisfying the following assumptions.

Assumption 1. The function pλ(x) defined on [0,+∞) satis-

fies:

(a) pλ(x) = λ2p(x/λ) with some function p(x) defined on

[0,+∞).
(b) p(x) is non-decreasing and concave on [0,+∞) with

p(0) = 0 and is differentiable almost everywhere on

(0,+∞);
(c) 0 ≤ p′(x1) ≤ p′(x2) ≤ λ for all x1 ≥ x2 ≥ 0 and

limx→0 p
′(x) = 1.

(d) There exists some φ1 > φ0 >
√
5 such that p′(φ0) >

0 and p′(x) = 0, ∀x ≥ φ1.

III. ALGORITHM

A. The MM Algorithmic Framework: A Brief Review

Consider the minimization of a continuous function F (y).
Initialized as y(0), the MM algorithm [29], [30] generates

a sequence of feasible points {y(t)}t≥1 by the following

induction. At point y(t−1), in the majorization step, we design

a surrogate function F̄ (y | y(t−1)) that locally approximates

the objective function F (y), satisfying
{
F̄ (y | y(t−1)) ≥ F (y),

F̄ (y(t−1) | y(t−1)) = F (y(t−1)).

Then, in the minimization step, we update y(t) as

y(t) ∈ argmin
y

{
F̄ (y | y(t−1))

}
.

B. Robust covariance matrix estimation via MM

We follow the MM framework to solve (2). In each it-

eration of MM, we find a weighted ℓ1 surrogate function

of
∑

i6=j pλ(|Σij |). Consequently, we consider a multistage

procedure that solves a sequence of convex relaxation sub-

problems, which is also known as an iteratively re-weighted

ℓ1 algorithm [31] or a difference of convex algorithm [32].

Specifically, starting with an initial estimate Σ̃(0), we consider

a sequence of convex optimization problems

min
Σ≻0



Lα(Σ)− τ log detΣ+

∑

k 6=l

p′λ(|Σ̂
(t−1)
kl |)|Σkl|



 , (3)
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where t = 1, 2, . . . , and Σ̂
(t)

is the optimal solution to the

t-th subproblem.

Each subproblem in (3) corresponds to a weighted ℓ1
penalized covariance estimation problem, which generally can

be written in the following form:

min
Σ≻0

{
Lα(Σ)− τ log detΣ+ ‖Λ ◦Σ‖1,off

}
(4)

where Λ is a d × d matrix of regularization parameters with

Λij ∈ [0, λ]. By convex optimization theory, any optimal

solution Σ̃ to (4) satisfies the following first-order optimality

condition:

∇Lα(Σ̂)− τΣ̂
−1

+Λ ◦Ξ = 0, with Ξ ∈ ∂‖Σ̂‖1,off .

Since analytical solution does not exist for (4), the exact solu-

tion Σ̂ can never be achieved. In practice, due to optimization

error from iterative methods, we define the ǫ-optimal solution

to problem (4) as follows:

Definition 2. For a pre-specified tolerance level ǫ > 0, we say

Σ̃ is an ǫ-optimal solution to (4) if

min
Ξ∈∂‖Σ̃‖

1,off

∥∥∥∇Lα(Σ̃)− τΣ̃
−1

+Λ ◦Ξ
∥∥∥
∞

≤ ǫ.

We use Σ̃
(t)

to denote an ǫ-optimal solution to the t-th
subproblem, which is given by

min
Σ≻0

{
Lα(Σ)− τ log detΣ+

∥∥∥Λ(t−1) ◦Σ
∥∥∥
1,off

}
, (5)

where Λ
(t−1)
kl = p′λ(|Σ̃

(t−1)
kl |) for all k, l ∈ [d].

IV. THEORETICAL RESULTS

Recall that the underlying true covariance matrix is denoted

by Σ∗. Let S = {(k, l) | Σ∗
kl 6= 0} be the support set of Σ∗

and s be its cardinality, i.e., s = |S|. In the following, we

impose some mild conditions on the true covariance matrix

Σ∗ and the distribution of the i.i.d. samples xi, i = 1, . . . , n.

Assumption 3. For the true covariance matrix, assume Σ∗ ≻
0.

Assumption 4. xi ∈ Rd is a heavy-tailed random variable,

i.e. E
[
|xij |4(1+γ)

]
≤ σ

2(1+γ)
x for all 1≤ j ≤ d with some

positive σx.

We assume Assumptions 1, 3, and 4 hold for the rest of the

paper. (declare this within every result.)

Definition 5. Given B∞(r) :=
{
∆ ∈ Rd×d : ‖∆‖∞ ≤ r

}
.

We define E1(r, κ) for any Σ ∈ Σ∗ + B
∞(r),

〈∇Lα(Σ)−∇Lα(Σ
∗),Σ−Σ∗〉 ≥ κ ‖Σ−Σ∗‖2F .

Proposition 6. Suppose that Assumptions 1 and 3 hold. Let

τ, λ, r > 0 satisfy

τ ≤ λs1/2

‖(Σ∗)−1‖F

, r > 5λs1/2.

Then, conditioned on the event E1(r, 1/2) ∩
{‖∇Lα(Σ

∗)‖∞ + ǫ ≤ 0.5λ}, any ǫ-optimal solution to

(4) satisfies ∥∥∥∥Σ̃
(1) −Σ∗

∥∥∥∥
F

≤ 5λs1/2

If we take λ ≍
√

log d
n in Proposition 6, then we can see that

the rate of convergence

√
s log d

n is the same as that obtained

by Wei’s paper.

Definition 7. Let C(l) :=
{
∆ ∈ R

d×d : ‖∆‖1 ≤ l‖∆‖F

}
.

The definition of C(l) converts a bound for

∥∥∥Σ̃
(T ) −Σ∗

∥∥∥
F

into a bound for

∥∥∥Σ̃
(T )−Σ∗

∥∥∥
1
. Assume that we have bounded

∥∥∥Σ̃
(T ) − Σ∗

∥∥∥
F
, i.e.

∥∥∥Σ̃
(T ) − Σ∗

∥∥∥
F
≤ M for some M > 0.

Then, given that

Σ̃
(T ) ∈ Σ∗ + C(l), (6)

we have

∥∥∥Σ̃
(T ) − Σ∗

∥∥∥
1
≤ lM . To gaurantee (6), a trivial

choice would be l ≍ d, but we will show that l ≍ s1/2 is

actually enough.

The following Proposition demonstrates the contraction

property of the solution path

{
Σ̃

(t)
}

t≥1

.

Proposition 8. Suppose that Assumptions 1 and 3 hold. By

Assumption 1, there exists some φ0 >
√
5 such that p′(φ0) >

0. Let

τ ≤ λs1/2

‖(Σ∗)−1‖F

(7)

and choose c > 0 so that

0.5p′(φ0)(c
2 + 1)1/2 + 2 = 0.5cφ0 (8)

Set l = (2+ 2
p′(φ0)

)(c2+1)1/2s1/2+ 2
p′(φ0)

s1/2 and let r > 0
satisfy

cφ0λs
1/2 ≤ r (9)

Under the minimal signal strength condition

‖Σ∗
S‖min ≥ φ0λ and conditioned on event

E1(r, 1/2) ∩ {‖∇Lα(Σ
∗)‖∞ + ǫ ≤ 0.5p′(φ0)λ}, any ǫ-

optimal solution Σ̃
(t)

to (5) satisfies Σ̃
(t) ∈ Σ∗ + C(l), and

we have∥∥∥∥Σ̃
(t) −Σ∗

∥∥∥∥
F

≤ δ

∥∥∥∥Σ̃
(t−1) −Σ∗

∥∥∥∥
F

+ 2
{
‖p′λ(|Σ∗

S | − φ0λ)‖F

+ s1/2ǫ+ ‖∇Lα(Σ
∗)S‖F + τ

∥∥(Σ∗)−1
∥∥

F

}

(10)

where δ =
√
5/φ0 ∈ (0, 1).

Remark 9. Let

rora := 2 {‖p′λ(|Σ∗
S | − φ0λ)‖F + ‖∇Lα(Σ

∗)S‖F

+s1/2ǫ+ τ
∥∥(Σ∗)−1

∥∥
F

}
,

then Proposition 2.2 states that
∥∥∥∥Σ̃

(t) −Σ∗

∥∥∥∥
F

≤ δ

∥∥∥∥Σ̃
(t−1) −Σ∗

∥∥∥∥
F

+ rora,
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where δ =
√
5/φ0 ∈ (0, 1). And by induction we further have

∥∥∥∥Σ̃
(t) −Σ∗

∥∥∥∥
F

≤ δt−1

∥∥∥∥Σ̃
(1) −Σ∗

∥∥∥∥
F

+ (1− δ)−1rora.

In Proposition 8, we have demonstrated the exact choice of

l in 6, which satisfies l ≍ s1/2. Meanwhile, we have shown

that the estimation error between the ǫ-optimal solution Σ̃
(t)

and the true covariance Σ∗ is bounded by two terms, namely,

rora and a contraction term.

Lemma 10. Suppose that Assumption 4 holds. Define

ǫkl = Σ∗
kℓ − ymkymℓ/2 for all k, l ∈ [d]. Then

max
{
E
[
ǫ2kl

]
,E

[
ǫ
2(1+γ)
kl

]}
≤ K for all k, l ∈ [d] with some

constant K that depends only on σx and γ.

Note that for the sake of simplicity, in 10, E
[
ǫ2kl

]
and

E

[
ǫ
2(1+γ)
kl

]
are bounded with the same constant K . Lemma

10 is a direct implication of Assumption 4. It uses the

moment condition on xi to achieve the moment conditions

on ǫkl, which will play an important role in the following

propositions.

Proposition 11. Suppose that Assumption 4 holds. Let K
be the constant defined in Lemma (10). Assume α satisfies

4K/α2 < 1/6. Then, with at least 1 − d2 exp(−n/12)
probability, for all Σ ∈ Σ∗ + B∞(α/2),

〈∇Lα(Σ)−∇Lα(Σ
∗),Σ−Σ∗〉 ≥ 1

2
‖Σ−Σ∗‖2F

Proposition 11 implies that with proper assumptions on α,

E1(α/2, 1/2) happens with high probability. For instance, by

taking n ? (log d)1+
1
2γ , we have 1− d2 exp(−n/12) ≥ 1 −

2/d.

Proposition 12. Suppose that Assumption 4 holds. Let K be

the constant defined in Lemma (10). Assume α =
√

Kn/ logd,

then

‖∇Lα(Σ
∗)‖∞ ≤ 8

√
K log d

n
(11)

with at least 1 − 2/d probability. Furthermore, if we have

n ≥ K−1(log d)1+
1
2γ , then for any β > 0,

Pr

{
‖∇Lα(Σ

∗)S‖F ≥ (β + 1)

√
Ks

n

}
≤ 2

β
. (12)

In Proposition 12, 11 indicates that

{‖∇Lα(Σ
∗)‖∞ + ǫ ≤ 0.5p′(φ0)λ} happens with high

probability if we take ǫ ≤
√
1/n and λ ≍

√
log d/n. 12

implies that for any p ∈ [0, 1), there exists β such that

‖∇Lα(Σ
∗)S‖F ≤ (β + 1)

√
Ks/n holds with at least p

probability as long as n ≥ K−1(log d)1+
1
2γ ≍ (log d)1+

1
2γ .

Weakly speaking, ‖∇Lα(Σ
∗)S‖F = OP (

√
s/n).

Theorem 13. Suppose that Assumptions 1, 3 and 4 hold. By

Assumption 1, there exists some φ1 > φ0 >
√
5 such that

p′(φ0) > 0 and p′(φ) = 0, ∀φ ≥ φ1

Suppose the sample size satisfies n ? (log d)1+
1
2γ . Take λ ≍√

log d/n, l ≍ s1/2 and let α =
√
Kn/ log d , r = α/2,

τ ≤
∥∥(Σ∗)−1

∥∥−1

F
·
√
Ks/n, ǫ ≤

√
K/n. Then, under the

minimal signal strength condition ‖Σ∗
S‖min ≥ (φ0 + φ1)λ,

the multi-stage estimator Σ̃
(T )

with T ?
log(log d)
log(1/δ) satisfies

the bound
∥∥∥∥Σ̃

(T ) −Σ∗

∥∥∥∥
F

> β

√
s

n
,

∥∥∥∥Σ̃
(T ) −Σ∗

∥∥∥∥
1

> β
s√
n

with at least 1− 2/d− d2 exp(−n/12)− 2/β probability and

K to be the constant defined in Lemma (10). This immediately

implies the following weaker conclusion

∥∥∥∥Σ̃
(T ) −Σ∗

∥∥∥∥
F

= OP

(√
s

n

)
,

∥∥∥∥Σ̃
(T ) −Σ∗

∥∥∥∥
1

= OP

(
s√
n

)

with at least 1− 2/d probability.

Theorem 13 is a direct consequence of the combination

of Proposition 8, 11 and 12, which implies that under weak

assumptions, we just need to solve no more than approximately

log log d convex problems to achieve the oracle rate
√
s/n. It

is easy to see that the proposed estimator achieves the oracle

statistical rate of convergence under weaker assumptions on

the distribution of sample data xi. In existing literature, Wei’s

paper proposes a formulation with squared loss that requires

sub-Gaussian assumption to achieve the oracle rate. With

Huber lost in our formulation, we only need to assume the

existence of 4(1 + γ)-th moment of xi. In other words, our

estimator is capable of handling heavy-tailed data.

V. NUMERICAL SIMULATIONS

VI. CONCLUSIONS

XXX

APPENDIX A

PROOFS OF STATISTICAL THEORY

In this appendix, we first provide some necessary lemmata,

and then provide the proofs of all the statistical theoretical

results in Section IV.

Lemma 14. Let E be a subset of [d] that contains S. For any

Σ ∈ Rd×d satisfying ΣE = 0 and ǫ > 0, provided Λ = (Λ)kl
satisfies ‖ΛE‖min > ‖∇Lα(Σ)E‖∞+ǫ, any ǫ-optimal solution

Σ̃ to (4) satisfies

∥∥∥(Σ̃−Σ)E

∥∥∥
1

≤(‖ΛE‖min − ‖∇Lα(Σ)E‖∞ − ǫ)−1

·
{
(‖ΛE‖∞ + ‖∇Lα(Σ)E‖∞ + ǫ) ·

∥∥∥(Σ̃−Σ)E

∥∥∥
1

+
∥∥τΣ−1

∥∥
F
·
∥∥∥Σ̃−Σ

∥∥∥
F

}

Proof: For any Ξ ∈ ∂
∥∥∥Σ̃

∥∥∥
1,off

, define U(Ξ) =

∇Lα(Σ̃) − τΣ̃
−1

+Λ ◦ Ξ ∈ Rd×d. By convexity of Lα(Σ)
and − log detΣ:

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉 ≥ 0 and 〈Σ−1−Σ̃
−1

, Σ̃−Σ〉 ≥ 0.
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Therefore,

〈U(Ξ), Σ̃−Σ〉 ≥ ‖U(Ξ)‖∞
∥∥∥Σ̃−Σ

∥∥∥
1

=〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉+ 〈∇Lα(Σ), Σ̃−Σ〉
− 〈τΣ−1, Σ̃−Σ〉+ 〈τΣ−1 − τΣ̃

−1
, Σ̃−Σ〉

+ 〈Λ ◦Ξ, Σ̃−Σ〉
≥0 + ‖∇Lα(Σ)E‖∞

∥∥∥(Σ̃−Σ)E

∥∥∥
1

+ ‖∇Lα(Σ)E‖∞
∥∥∥(Σ̃−Σ)E

∥∥∥
1

+
∥∥τΣ−1

∥∥
F
·
∥∥∥Σ̃−Σ

∥∥∥
F
+ 0 + 〈Λ ◦Ξ, Σ̃−Σ〉

Moreover, we have

〈Λ ◦Ξ, Σ̃−Σ〉
=〈(Λ ◦Ξ)E , (Σ̃−Σ)E〉+ 〈(Λ ◦Ξ)E , (Σ̃−Σ)E〉
≥ ‖ΛE‖min

∥∥∥(Σ̃−Σ)E

∥∥∥
1
− ‖ΛE‖∞

∥∥∥(Σ̃−Σ)E

∥∥∥
1

Together, the last two displays imply

‖U(Ξ)‖∞
∥∥∥Σ̃−Σ

∥∥∥
1

≥‖∇Lα(Σ)E‖∞
∥∥∥(Σ̃−Σ)E

∥∥∥
1
+ ‖∇Lα(Σ)E‖∞

∥∥∥(Σ̃−Σ)E

∥∥∥
1

+
∥∥τΣ−1

∥∥
F
·
∥∥∥Σ̃−Σ

∥∥∥
F
+ ‖ΛE‖min

∥∥∥(Σ̃−Σ)E

∥∥∥
1

− ‖ΛE‖∞
∥∥∥(Σ̃−Σ)E

∥∥∥
1

Since the right-hand side of this inequality does not depend

on Ξ, taking the infimum with respect to Ξ ∈ ∂
∥∥∥Σ̃

∥∥∥
1,off

on

both sides to reach

ǫ
∥∥∥Σ̃−Σ

∥∥∥
1

≥‖∇Lα(Σ)E‖∞
∥∥∥(Σ̃−Σ)E

∥∥∥
1
+ ‖∇Lα(Σ)E‖∞

∥∥∥(Σ̃−Σ)E

∥∥∥
1

+
∥∥τΣ−1

∥∥
F
·
∥∥∥Σ̃−Σ

∥∥∥
F
+ ‖ΛE‖min

∥∥∥(Σ̃−Σ)E

∥∥∥
1

− ‖ΛE‖∞
∥∥∥(Σ̃−Σ)E

∥∥∥
1

Decompose

∥∥∥Σ̃−Σ

∥∥∥
1

as

∥∥∥(Σ̃−Σ)E

∥∥∥
1
+
∥∥∥(Σ̃−Σ)E

∥∥∥
1
, the

stated result follows immediately.

Lemma 15. Consider some Σ ∈ Rd×d satisfying ΣSc = 0,

and let E ⊆[d] be a subset that contains S that has cardinality

|E| = k. Assume that Λ = (Λ)kl satisfies ‖Λ‖∞ ≤ λ and

‖ΛE‖min ≥ ρλ > 0 for some ρ ∈ (0, 1], τ ≤ λs1/2

‖Σ−1‖
F

.

Conditioned on event {‖∇Lα(Σ)‖∞ + ǫ ≤ 0.5ρλ}, any ǫ-

optimal solution Σ̃ to (4) satisfies Σ̃ ∈ Σ + C(l), where

l =
(
2 + 2

ρ

)
k1/2 + 2

ρs
1/2. Moreover, let r, κ > 0 satisfy

r > κ−1
{
2λs1/2 + 0.5ρλk1/2

}
.

Then, conditioned on the event E1(r, κ) ∩
{‖∇Lα(Σ)‖∞ + ǫ ≤ 0.5ρλ},
∥∥∥Σ̃−Σ

∥∥∥
F
≤ κ−1

{
‖ΛS‖F + ‖∇Lα(Σ)E‖F + k1/2ǫ+

∥∥τΣ−1
∥∥

F

}

≤ κ−1
{
2λs1/2 + 0.5ρλk1/2

}
< r

Proof: Conditioned on the stated event, Lemma 14 indi-

cates

∥∥∥(Σ̃−Σ)E

∥∥∥
1
≤

(
1 +

2

ρ

)∥∥∥(Σ̃−Σ)E

∥∥∥
1
+

2

ρ

√
s
∥∥∥Σ̃−Σ

∥∥∥
F
.

Therefore,

∥∥∥Σ̃−Σ

∥∥∥
1
≤

(
1 +

2

ρ

)√
k
∥∥∥Σ̃−Σ

∥∥∥
F
+

2

ρ

√
s
∥∥∥Σ̃−Σ

∥∥∥
F
,

which implies that Σ̃ ∈ Σ+ C(l).

Now we prove the second statement. Define η = sup{u ∈
[0, 1] : (1 − u)Σ+ uΣ̃ ∈ B(r)}, where B(r) = {∆ ∈ Rd×d :
‖∆‖F ≤ r}. Note that η = 1 if Σ̃ ∈ Σ + B(r) and η ∈
(0, 1) otherwise. Let Σ̃η := (1 − η)Σ + ηΣ̃. Notice that if∥∥∥Σ̃η −Σ

∥∥∥
F
< r, then Σ̃η = Σ̃. By the convexity of Huber

loss, we have

〈∇Lα(Σ̃η)−∇Lα(Σ), Σ̃η −Σ〉
≤ η〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉 (13)

Recall that B∞(r) :=
{
∆ ∈ Rd×d : ‖∆‖∞ ≤ r

}
. Since Σ̃η−

Σ ∈ B(r) ⊆ B∞(r), conditioned on event E1, we have

〈∇Lα(Σ̃η)−∇Lα(Σ), Σ̃η −Σ〉 ≥ κ
∥∥∥Σ̃η −Σ

∥∥∥
2

F
(14)

Now we upper bound the right-hand side of (13). For any

Ξ ∈ ∂
∥∥∥Σ̃

∥∥∥
1,off

, write

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉
= 〈U(Ξ), Σ̃−Σ〉︸ ︷︷ ︸

:=Π1

− 〈∇Lα(Σ), Σ̃−Σ〉︸ ︷︷ ︸
:=Π2

− 〈Λ ◦Ξ, Σ̃−Σ〉︸ ︷︷ ︸
:=Π3

+ 〈τΣ−1, Σ̃−Σ〉︸ ︷︷ ︸
:=Π4

− τ〈Σ−1 − Σ̃
−1

, Σ̃−Σ〉︸ ︷︷ ︸
≥0

(15)

where U(Ξ) := ∇Lα(Σ̃)− τΣ̃
−1

+Λ ◦Ξ ∈ Rd×d. We have

|Π1| ≤ ‖U(Ξ)‖∞
∥∥∥(Σ̃−Σ)E

∥∥∥
1
+ ‖(U(Ξ))E‖F

∥∥∥(Σ̃−Σ)E

∥∥∥
F

|Π2| ≤ ‖∇Lα(Σ)E‖F

∥∥∥(Σ̃−Σ)E

∥∥∥
F
+ ‖∇Lα(Σ)E‖∞

∥∥∥(Σ̃−Σ)E

∥∥∥
1

|Π4| ≤
∥∥τΣ−1

∥∥
F
·
∥∥∥Σ̃−Σ

∥∥∥
F

Turning to Π3, decompose Λ ◦ Ξ and Σ̃ − Σ according to

S ∪ (E/S) ∪ E to reach

Π3 = 〈(Λ ◦Ξ)S , (Σ̃−Σ)S〉
+ 〈(Λ ◦Ξ)E\S , (Σ̃−Σ)E\S〉+ 〈(Λ ◦Ξ)E , (Σ̃−Σ)E〉

Since ΣE = 0 and Ξ ∈ ∂
∥∥∥Σ̃

∥∥∥
1,off

, we have 〈(Λ ◦

Ξ)E , (Σ̃ − Σ)E〉 = 〈ΛE ,
∣∣∣Σ̃E

∣∣∣〉 = 〈ΛE ,
∣∣∣(Σ̃−Σ)E

∣∣∣〉. Also,

〈(Λ ◦ Ξ)E\S , (Σ̃ − Σ)E\S〉 = 〈(Λ ◦ Ξ)E\S , Σ̃E\S〉 ≥ 0.

Therefore,

Π3 ≥ ‖ΛE‖min

∥∥∥(Σ̃−Σ)E

∥∥∥
1
− ‖ΛS‖F

∥∥∥(Σ̃−Σ)S

∥∥∥
F
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Combining (15) with our estimation for Π1,Π2,Π3 and Π4,

we have

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉
≤ − {‖ΛE‖min − ‖∇Lα(Σ)‖∞ − ‖U(Ξ)‖∞}

∥∥∥(Σ̃−Σ)E

∥∥∥
1

+ ‖∇Lα(Σ)E‖F

∥∥∥(Σ̃−Σ)E

∥∥∥
F
+ ‖(U(Ξ))E‖F

∥∥∥(Σ̃−Σ)E

∥∥∥
F

+ ‖ΛS‖F

∥∥∥(Σ̃−Σ)E

∥∥∥
F
+
∥∥τΣ−1

∥∥
F

∥∥∥Σ̃−Σ

∥∥∥
F

Taking the infimum with respect to Ξ ∈ ∂
∥∥∥Σ̃

∥∥∥
1,off

on both

sides, it follows that

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉
≤ − {‖λE‖min − ‖∇Lα(Σ)‖∞ − ǫ}

∥∥∥(Σ̃−Σ)E

∥∥∥
1

+ {‖∇Lα(Σ)‖F + k1/2ǫ}
∥∥∥(Σ̃−Σ)E

∥∥∥
F

+ ‖ΛS‖F

∥∥∥(Σ̃−Σ)E

∥∥∥
F
+
∥∥τΣ−1

∥∥
F

∥∥∥Σ̃−Σ

∥∥∥
F

(16)

With Σ̃η−Σ = η(Σ̃−Σ), it follows from (13), (14) and (16)

that conditioned on E1(r, κ) ∩ {‖∇Lα(Σ)‖∞ + ǫ ≤ 0.5ρλ},

κ
∥∥∥Σ̃η −Σ

∥∥∥
2

F
≤

{
‖ΛS‖F + ‖∇Lα(Σ)E‖F + k1/2ǫ+

∥∥τΣ−1
∥∥

F

}∥∥∥Σ̃η −Σ

∥∥∥
F

Therefore,
∥∥∥Σ̃η −Σ

∥∥∥
F

≤ κ−1
{
‖ΛS‖F + ‖∇Lα(Σ)E‖F + k1/2ǫ+

∥∥τΣ−1
∥∥

F

}

≤ κ−1{λs1/2 + 0.5ρλk1/2 + λs1/2} < r
(17)

Since Σ̃η − Σ falls in the interior of B(r), we must have

Σ̃−Σ = Σ̃η −Σ ∈ B(r). Consequently, (17) also holds for

Σ̃−Σ.

A. Proof of Proposition 6

Proof: With the initial estimate Σ̃
(0)

= I, we have

Λ
(0)
kl = p′λ(0) = λ for all k, l ∈ [d]. Then the result follows

immediately from Lemma 15 with Σ = Σ∗, E = S and ρ = 1.

B. Proof of Proposition 8

Proof: With the initial estimate Σ̃
(0)

= 0, we have Λ
(0)
kl =

p′λ(0) = λ for all k, l ∈ [d]. Then, applying Lemma 15 with

Σ = Σ∗, E = S and ρ = p′(φ0) we obtain that, conditioned

on the event E1(r, 1/2)∩ {‖∇Lα(Σ
∗)‖∞ + ǫ ≤ 0.5p′(φ0)λ},

∥∥∥∥Σ̃
(1) −Σ∗

∥∥∥∥
F

≤ 2
{∥∥∥Λ(0)

S

∥∥∥
F
+ ‖∇Lα(Σ

∗)S‖F + s1/2ǫ+ τ
∥∥(Σ∗)−1

∥∥
F

}

≤ 2 {2 + 0.5p′(φ0)} s1/2λ
(18)

For t ≥ 1, define the augmented set

Et = S ∪
{
(k, l) : Λ

(t−1)
kl < p′(φ0)λ

}

which depends on the solution Σ̃
(t−1)

from the previous step.

We claim that the above constructed sets satisfy

|Et| < (c2 + 1)s (19)

If (19) is true, it follows from Lemma 15 with Σ = Σ∗,

E = Et , k = (c2 + 1) and ρ = p′(φ0) that conditioned on

the event E1(r, 1/2)∩{‖∇Lα(Σ
∗)‖∞ + ǫ ≤ 0.5p′(φ0)λ}, we

have Σ̃
(t) ∈ Σ∗ + C(l) and

∥∥∥∥Σ̃
(t) −Σ∗

∥∥∥∥
F

≤ 2
{∥∥∥Λ(t−1)

S

∥∥∥
F
+ ‖∇Lα(Σ

∗)Et‖F + |Et|1/2 ǫ+ τ
∥∥(Σ∗)−1

∥∥
F

}

≤ 2
{
2λs1/2 + 0.5p′(φ0)λ(c

2 + 1)1/2s1/2
}
= cφ0λs

1/2 ≤ r

(20)

where the last two steps follow from (8) and (9).We will prove

our claim (19) by induction. For t = 1, we have Λ
(0)
kl =

p′λ(0) = λ for all k, l ∈ [d], so E1 = S and (19) holds.

Next, assume (19) holds for some t ≥ 1, from which (20)

follows. To bound |Et+1|, note that for any (k, l) ∈ Et+1\S,

p′λ(
∣∣∣Σ̃(t)

kl

∣∣∣) = Λ
(t)
kl < p′(φ0)λ = p′λ(φ0λ). Together with the

monotonicity of p′λ, this implies that

∣∣∣Σ̃(t)
kl

∣∣∣ > φ0λ. Recalling

that Σ∗
kl = 0 for (k, l) ∈ Et+1\S, we obtain

|Et+1\S|1/2 <





∑

(k,l)∈Et+1\S

(∣∣∣Σ̃(t)
kl

∣∣∣ /φ0λ
)2





1/2

(21)

=

∥∥∥∥(Σ̃
(t+1) −Σ∗)Et+1\S

∥∥∥∥
F

/(φ0λ) ≤ cs1/2

The last inequality follows from (20). Therefore |Et+1| ≤ |S|+
|Et+1\S| < (c2 +1)1/2s, which completes the induction step.

Now we start to prove (10). Recall that for each

(k, l), Λ
(t−1)
kl = p′λ(

∣∣∣Σ̃(t−1)
kl

∣∣∣). If

∣∣∣Σ̃(t−1)
kl − Σ∗

kl

∣∣∣ ≥ φ0λ,

then Λ
(t−1)
kl ≤ λ ≤

∣∣∣Σ̃(t−1)
kl − Σ∗

kl

∣∣∣ /φ0; otherwise if∣∣∣Σ̃(t)
kl − Σ∗

kl

∣∣∣ < φ0λ, then Λ
(t−1)
kl = p′λ(

∣∣∣Σ̃(t−1)
kl

∣∣∣) ≤
p′λ(|Σ∗

kl|−φ0λ) due to the monotonicity of p′λ. Putting together

the pieces, we conclude that

∥∥∥Λ(t−1)
S

∥∥∥
F
≤ ‖p′λ(|Σ∗

S | − φ0λ)‖F + φ−1
0

∥∥∥∥(Σ̃
(t−1) −Σ∗)S

∥∥∥∥
F

(22)

For the remaining terms that involve Et in (20), by the triangle

inequality

‖∇Lα(Σ
∗)Et‖F + |Et|1/2 ǫ

≤ ‖∇Lα(Σ
∗)S‖F + s1/2ǫ+

∥∥∇Lα(Σ
∗)Et\S

∥∥
F
+ |Et\S|1/2 ǫ

≤ ‖∇Lα(Σ
∗)S‖F + s1/2ǫ

+ (‖∇Lα(Σ
∗)‖∞ + ǫ) ·

∥∥∥∥(Σ̃
(t−1) −Σ∗)Et\S

∥∥∥∥
F

/(φ0λ)

≤ ‖∇Lα(Σ
∗)S‖F + s1/2ǫ+

p′(φ0)

2φ0

∥∥∥∥(Σ̃
(t−1) −Σ∗)Et\S

∥∥∥∥
F

(23)
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where the second equality follows from (21) and the

last inequality follows from {‖∇Lα(Σ
∗)‖∞ + ǫ ≤

0.5p′(φ0)λ}.Plugging (22) and (23) into (20) yields

∥∥∥∥Σ̃
(t) −Σ∗

∥∥∥∥
F

≤2

{
‖p′λ(|Σ∗

S | − φ0λ)‖F + φ−1
0

∥∥∥∥(Σ̃
(t−1) −Σ∗)S

∥∥∥∥
F

+ ‖∇Lα(Σ
∗)S‖F + s1/2ǫ

+
p′(φ0)

2φ0

∥∥∥∥(Σ̃
(t−1) −Σ∗)Et\S

∥∥∥∥
F

+ τ
∥∥(Σ∗)−1

∥∥
F

}

≤2

{
‖p′λ(|Σ∗

S | − φ0λ)‖F + ‖∇Lα(Σ
∗)S‖F + s1/2ǫ

+

√
5

2φ0

∥∥∥∥(Σ̃
(t−1) −Σ∗)Et

∥∥∥∥
F

+ τ
∥∥(Σ∗)−1

∥∥
F

}

=2

{
‖p′λ(|Σ∗

S | − φ0λ)‖F + ‖∇Lα(Σ
∗)S‖F + s1/2ǫ

+ τ
∥∥(Σ∗)−1

∥∥
F

}
+

√
5

φ0

∥∥∥∥(Σ̃
(t−1) −Σ∗)Et

∥∥∥∥
F

The second inequality follows because p′(φ0) ≤ 1 and for any

a, b ≥ 0,
√
a +

√
b/4 ≤

√
5(a+ b)/4. The proof of (10) is

then completed.

C. Proof of Lemma 10

Proof: Let σy := 4σx. Given that {y1,y2, . . . ,yN} are

identically distributed and with the cr-inequality,

E

[
|ymj |4(1+γ)

]
= E

[
|x1j − x2j |4(1+γ)

]

≤ 24(1+γ)−1
{
E

[
|x1j |4(1+γ)

]
+ E

[
|x2j |4(1+γ)

]}

≤ 24(1+γ)σ2(1+γ)
x = σ2(1+γ)

y , ∀j ∈ [d].

The second inequality follows from Assumption (4). Using the

cr-inequality again, E
[
ǫ
2(1+γ)
kl

]
is bounded by a constant K

as follows:

E

[
ǫ
2(1+γ)
kl

]

≤ 22(1+γ)−1
(
|Σ∗

kl|2(1+γ)
+ E

[
|ymkyml/2|2(1+γ)

])

= 22(1+γ)−1
(
|E [ymkyml/2]|2(1+γ) + (σy/2)

2(1+γ)
)

≤ 22(1+γ)−1

{(
σ2(1+γ)
y + 1

)1+γ

/22(1+γ) + (σy/2)
2(1+γ)

}

= 2−1

{(
σ2(1+γ)
y + 1

)1+γ

+ σ2(1+γ)
y

}
:= K.

The last inequality uses the fact that E
[
y4mj

]
≤

E
[
|ymj|4(1+γ)

]
+ 1 for j ∈ [d]. By similar reasoning,

E
[
ǫ2kl

]
= Var (ymkymℓ/2) ≤ E

[
y2mky

2
mℓ

]
/4 ≤ (σ2(1+γ)

y +1)/4 < K.

D. Proof of Proposition 11

Proof: For fixed k, l ∈ [d], Σ∗
kℓ − ymkymℓ/2

are identically distributed for m ∈ [N ]. Let Dkl =
(1/N)

∑N
m=1 1 (|Σ∗

kℓ − ymkymℓ/2| ≤ α/2). By Chebyshev’s

inequality,

E[Dkl] = Pr (|Σ∗
kℓ − ymkymℓ/2| ≤ α/2) ≥ 1−4K/α2 > 5/6.

The last inequality holds with 4K/α2 < 1/6.

Let hkl(xi,xj) := 1 (|Σ∗
kℓ − (xik − xjk)(xil − xjl)/2| ≤ α/2).

Then it’s easy to see that

Dkl = (1/N)
∑

1≤i<j≤n

hkl(xi,xj)

Let q = ⌊n/2⌋ and
∑

P denote the summation over all n!
perumtations (i1, . . . , in) of [n] := {1, . . . , n}. Using the same

technique used in the Proof of Theorem 3.1 in [28], it can be

shown that

Pr (Dkl ≤ 1/2) ≤ Pr
(
e−nDkl ≥ e−n/2

)

≤ en/2
1

n!

∑

P

q∏

j=1

Ee−(n/q)·hkl(xi2j−1
,xi2j

).
(24)

Considering the fact that e−(n/q)t ≤ 1 − (1 − e−n/q)t for

0 ≤ t ≤ 1,

Ee−(n/q)·hkl(xi2j−1
,xi2j

)

≤ 1− (1− e−n/q)E
[
hkl(xi2j−1

,xi2j )
]

≤ 1− (5/6) · (1− e−n/q).

(25)

With (24) and (25),

Pr (Dkl ≤ 1/2) ≤ en/2
[
1/6 + (5/6) · e−n/q

]q
. (26)

Given q = ⌊n/2⌋, it is easy to verify that 1/6+(5/6)·e−n/q ≤
e−(7/12)·(n/q) for n ≥ 11. Combining this with (26) yields

Pr (Dkl ≤ 1/2) ≤ e−n/12.

With union bound we have

Pr

[
min
k,l

Dkl <
1

2

]
≤ d2 exp(−n/12).

Let Gkl = {m ∈ [N ] : |Σ∗
kℓ − ymkymℓ/2| ≤ α/2}. Under the

event that mink,l Dkl ≥ 1/2,

1

N

N∑

m=1

{ρ′α(Σkℓ − ymkymℓ/2)− ρ′α(Σ
∗
kℓ − ymkymℓ/2)} · (Σkl − Σ∗

kl)

≥ 1

N

∑

m∈Gkl

{ρ′α(Σkℓ − ymkymℓ/2)− ρ′α(Σ
∗
kℓ − ymkymℓ/2)}

· (Σkl − Σ∗
kl)

=
|Gkl|
N

· (Σkl − Σ∗
kl)

2 ≥ 1

2
(Σkl − Σ∗

kl)
2,
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where the last equality uses Σ ∈ Σ∗ +B∞(α/2) and the last

inequality follows from |Gkl| /N = Dkl. Therefore,

〈∇Lα(Σ)−∇Lα(Σ
∗),Σ−Σ∗〉

=
∑

k,l

1

N

N∑

m=1

{ρ′α(Σkℓ − ymkymℓ/2)−

ρ′α(Σ
∗
kℓ − ymkymℓ/2)} · (Σkl − Σ∗

kl)

≥1

2
‖Σ−Σ∗‖2F

with at least 1− d2 exp(−n/12) probability.

We adopt the following notations before the next stage

of proof. Recall that Lα(Σ) =
∑

k,ℓ
1
N

∑N
m=1 ρα(Σkℓ −

ymkymℓ/2). Define B(Σ) := E[∇Lα(Σ)], and W∗ :=
∇Lα(Σ

∗)− E[∇Lα(Σ)].

Lemma 16. Recall that K is the constant defined in Lemma

10. |(B(Σ∗))kl| < K
α1+2γ . Let α =

√
Kn
log d . If we have

n ≥ K−1(log d)1+
1
2γ , then ‖B(Σ∗)‖∞ ≤

√
K/n and

‖B(Σ∗)S‖F ≤
√
Ks/n.

Proof: For fixed k, l ∈ [d], Σ∗
kℓ − ymkymℓ/2 are identi-

cally distributed for m ∈ [N ]. Let ǫkl = Σ∗
kℓ − ymkymℓ/2,

then

|E[ρ′α(ǫkl)]| = |E[ǫklI(|ǫkl| ≤ α) + αsgn(ǫkl)I(|ǫkl| > α)]|
= |E[ǫkl + (αsgn(ǫkl)− ǫkl)I(|ǫkl| > α)]|
= |E{[ǫkl − αsgn(ǫkl)]I(|ǫkl| > α)}|
≤ |E[(|ǫkl| − αsgn(ǫkl))I(|ǫkl| > α)]|

≤

∣∣∣E[(ǫ2(1+γ)
kl − α2(1+γ))I(|ǫkl| > α)]

∣∣∣
α1+2γ

<
K

α1+2γ
.

Therefore, for all k, l,

|(B(Σ∗))kl| =
1

N

∣∣∣∣∣

N∑

m=1

E [ρ′α(Σ
∗
kℓ − ymkymℓ/2)]

∣∣∣∣∣ <
K

α1+2γ
.

If we have α =
√
Kn/ log d and n ≥ K−1(log d)1+

1
2γ , then

‖B(Σ∗)‖∞ ≤ K

(Kn/ log d)1/2+γ
≤

√
K

n
,

and

‖B(Σ∗)S‖F ≤
√
s · ‖B(Σ∗)‖∞ ≤

√
Ks

n
.

E. Proof of Proposition 12

Proof: For fixed k, l, denote Σ∗
kl −

(xik − xjk) (xil − xjl) /2 as ǫi,j . Let hkl(xi,xj) := ρ′α (ǫi,j).
Then it’s easy to see that

(∇Lα(Σ
∗))kl = (1/N)

∑

1≤i<j≤n

hkl(xi,xj).

Let q = ⌊n/2⌋ and
∑

P denote the summation over all n!
perumtations (i1, . . . , in) of [n] := {1, . . . , n}. Using the same

technique used in the Proof of Theorem 3.1 in [28], it can be

shown that

Pr ((∇Lα(Σ
∗))kl ≥ y) ≤ Pr

(
e(q/α)·(∇Lα(Σ∗))kl ≥ e(q/α)·y

)

≤ e−(q/α)·y 1

n!

∑

P

q∏

j=1

Ee(1/α)·hkl(xi2j−1
,xi2j

).

(27)

Let ρ1(·) denote the Huber loss function defined in (1) with

α = 1. Note that hkl(xi,xj) = ρ′α (ǫi,j) = αρ′1 (ǫi,j/α). In

addition, it is easy to verify the inequality that

− log(1− x+ x2) ≤ ρ′1(x) ≤ log(1 + x+ x2)

Therefore,

Ee(1/α)·hkl(xi2j−1
,xi2j

) ≤ 1 + E
[
ǫi2j−1,i2j/α

]
+ E

[
(ǫi2j−1,i2j/α)

2
]

≤ 1 +K/α2 ≤ eK/α2

,
(28)

where the second inequality holds because E
[
ǫi2j−1,i2j

]
= 0

and E

[
ǫ2i2j−1,i2j

]
≤ K by Lemma 10. Combining (27) and

(28) yields

Pr ((∇Lα(Σ
∗))kl ≥ y) ≤ e−(q/α)·y+qK/α2

.

Similarly, it can be shown that Pr ((∇Lα(Σ
∗))kl ≤ −y) ≤

e−(q/α)·y+qK/α2

. Since α =
√
Kn/ logd, by taking y =

8
√
K log d/n, we conclude that

Pr
(
|(∇Lα(Σ

∗))kl| ≥ 8
√
K log d/n

)

≤ 2e−(q/n)·7 log d ≤ 2/d3.

The last inequality follows from q = ⌊n/2⌋. With the union

bound, we have

‖∇Lα(Σ
∗)‖∞ ≤ 8

√
K log d

n

with at least 1− 2/d probability.

Now we prove the second statement. We have

E ‖W∗
S‖F = E

√ ∑

(k,l)∈S

(W ∗
kl)

2 ≤
√ ∑

(k,l)∈S

E(W ∗
kl)

2
.

(29)

The inequality holds because f(t1, t2 . . . , ts) =√
t1 + t2 + · · ·+ ts is concave. Recall that for fixed

k, l, denote Σ∗
kl − (xik − xjk) (xil − xjl) /2 as ǫi,j . Note that

with Lemma 10, E
[
ǫ2i,j

]
≤ K . Recall that

W ∗
kl =

1

N

∑

1≤i<j≤n

{ρ′α(ǫi,j)− Eρ′α(ǫi,j)} .

Then

N2
E(W ∗

kl)
2

=
∑

(i,j,i′,j′)∈G

E [{ρ′α(ǫi,j)− Eρ′α(ǫi,j)}

· {ρ′α(ǫi′,j′)− Eρ′α(ǫi′,j′ )}] ,
where G = {(i, j, i′, j′) : 1 ≤ i < j ≤ n, 1 ≤ i′ < j′ ≤ n}
denote the set of pairs of indices. Let Gd =
{(i, j, i′, j′) ∈ G : i, j, i′, j′ are not equal to each other}.

Notice that (i, j, i′, j′) ∈ Gd indicates that ǫi,j and ǫi′,j′ are
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independent because xi,xj ,xi′ ,xj′ are independent samples,

and consequently,
∑

(i,j,i′,j′)∈Gd

E [{ρ′α(ǫi,j)− Eρ′α(ǫi,j)}

· {ρ′α(ǫi′,j′)− Eρ′α(ǫi′,j′)}] = 0.

Therefore,

N2
E(W ∗

kl)
2

=
∑

(i,j,i′,j′)∈Gd

E [{ρ′α(ǫi,j)− Eρ′α(ǫi,j)}

· {ρ′α(ǫi′,j′)− Eρ′α(ǫi′,j′ )}] .

(30)

A more basic bound yields

E [{ρ′α(ǫi,j)− Eρ′α(ǫi,j)}
· {ρ′α(ǫi′,j′)− Eρ′α(ǫi′,j′)}]

≤ [Var {ρ′α(ǫi,j)} · Var {ρ′α(ǫi,j)}]
1/2

≤ [Var {ǫi,j} · Var {ǫi,j}]1/2 ≤ K

(31)

By definition of Gd, it’s easy to verify that
∣∣Gd

∣∣ = (2n− 3)N .

Combining this with (29), (30) and (31), we have

E ‖W∗
S‖F ≤

√
(2n− 3)Ks

N
<

√
4Ks

n
(32)

With Markov’s inequality, we have

Pr

{
‖W∗

S‖F ≥ β

√
Ks

n

}
≤ E ‖W∗

S‖F

β
√
Ks/n

<
2

β

Recall that ∇Lα(Σ
∗) = B(Σ∗) +W∗. With Lemma 16, we

have ‖B(Σ∗)S‖F ≤
√
Ks/n. Combing the this with (32), we

have

Pr

{
‖∇Lα(Σ

∗)S‖F ≥ (β + 1)

√
Ks

n

}
≤ 2

β
.

F. Proof of Theorem 13

Proof: Choose c > 0 so that

0.5p′(φ0)
(
c2 + 1

)1/2
+ 2 = 0.5cφ0

Set l =
(
2 + 2

p′(φ0)

) (
c2 + 1

)1/2
s1/2 + 2

p′(φ0)
s1/2. Then it’s

easy to verify that given r = α/2,

cφ0λs
1/2 ≤ r and 5λs1/2 ≤ r.

Apply Proposition 8 to conclude that, for

any positive constant β, conditioned on event

E1(r, 1/2) ∩ {‖∇Lα(Σ
∗)‖∞ + ǫ ≤ 0.5p′(φ0)λ} ∩{

‖∇Lα(Σ
∗)S‖F ≤ (β + 1)

√
Ks/n

}
, we have

Σ̃
(t) ∈ Σ∗ + C(l) and

∥∥∥∥Σ̃
(t) −Σ∗

∥∥∥∥
F

≤ δ

∥∥∥∥Σ̃
(t−1) −Σ∗

∥∥∥∥
F

+ 2{‖p′λ(|Σ∗
S | − φ0λ)‖F

+ s1/2ǫ+ ‖∇Lα(Σ
∗)S‖F + τ

∥∥(Σ∗)−1
∥∥

F
}
(33)

By ‖Σ∗
S‖min ≥ (φ0+φ1)λ, we have ‖p′λ(|Σ∗

S | − φ0λ)‖F
= 0,

so∥∥∥∥Σ̃
(t) −Σ∗

∥∥∥∥
F

≤ δ

∥∥∥∥Σ̃
(t−1) −Σ∗

∥∥∥∥
F

+ 2{s1/2ǫ+ ‖∇Lα(Σ
∗)S‖F + τ

∥∥(Σ∗)−1
∥∥

F
}

Therefore by Remark 9,
∥∥∥∥Σ̃

(T ) −Σ∗

∥∥∥∥
F

≤ δT−1

∥∥∥∥Σ̃
(1) −Σ∗

∥∥∥∥
F

+
2

1− δ
{s1/2ǫ + ‖∇Lα(Σ

∗)S‖F + τ
∥∥(Σ∗)−1

∥∥
F
}

≤
√
s/n+

2

1− δ
(β+3)

√
Ks/n > β

√
s/n.

The second inequality uses the bound of

∥∥∥∥Σ̃
(1) −Σ∗

∥∥∥∥
F

given

in Proposition 6. Provided that Σ̃
(T )−Σ∗ ∈ C(l) and l ≍ s1/2,

∥∥∥∥Σ̃
(T ) −Σ∗

∥∥∥∥
1

> s1/2 · β
√

s

n
.

Take n ≥ K−1(log d)1+
1
2γ . By Proposition

11, Proposition 12 and the union bound, event

E1(r, 1/2) ∩ {‖∇Lα(Σ
∗)‖∞ + ǫ ≤ 0.5p′(φ0)λ} ∩{

‖∇Lα(Σ
∗)S‖F ≤ (β + 1)

√
Ks/n

}
happens with at

least 1− 2/d− d2 exp(−n/12)− 2/β probability.

To prove the weaker conclusion, condition only on the event

{‖∇Lα(Σ
∗)‖∞ + ǫ ≤ 0.5p′(φ0)λ}, which holds with at least

1− 2/d probability. Compute:

lim
M→∞

lim sup
n

Pr

{∥∥∥∥Σ̃
(T ) −Σ∗

∥∥∥∥
F

≥ M
√
s/n

}

= lim
β→∞

lim sup
n

Pr

{∥∥∥∥Σ̃
(T ) −Σ∗

∥∥∥∥
F

≥
√
s/n+

2

1− δ
(β + 3)

√
s/n

}

≤ lim
β→∞

lim sup
n

d2 exp(−n/12) + 2/β

= lim
β→∞

2/β = 0.

That is, ∥∥∥∥Σ̃
(T ) −Σ∗

∥∥∥∥
F

= OP (
√

s/n).

Similarly,

∥∥∥∥Σ̃
(T ) −Σ∗

∥∥∥∥
1

= OP (s/
√
n).
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