Define $f(\Sigma) := L_{\alpha}(\Sigma) + \lambda \|\Sigma\|_{1, \text{ off}}$, recall that

$$\widetilde{\Sigma} \in \arg\min_{\Sigma \succeq \mathbf{0}} f(\Sigma) - \tau \log \det \Sigma.$$

We want to show $\left\|\widetilde{\Sigma} - \Sigma^*\right\|_{\infty} \lesssim \alpha$ in this draft by consider the following optimization problem:

$$\max_{\Sigma \in S} \|\Sigma - \Sigma^*\|_{\infty} + \frac{4}{\alpha} \left(\tau d + f(\widehat{\Sigma}^+) - f(\Sigma)\right) \tag{1}$$

where $\widehat{\Sigma}^+ \in \arg\min_{\Sigma\succeq \mathbf{0}} f(\Sigma)$ is the positive semi-definite estimator and S is the feasible region with $S:=\left\{\Sigma: f(\widehat{\Sigma}^+) \leq f(\Sigma) \leq f(\widehat{\Sigma}^+) + \tau d\right\}$. For simplicity, let $g(\Sigma)$ denote the objective function in (1), i.e.

$$g(\Sigma) := \|\Sigma - \Sigma^*\|_{\infty} + \frac{4}{\alpha} \left(\tau d + f(\widehat{\Sigma}^+) - f(\Sigma)\right).$$

Lemma 1. Let Σ be an optimal solution to (1) with $f(\Sigma) < f(\widehat{\Sigma}^+) + \tau d$, then $\|\Sigma - \Sigma^*\|_{\infty} \lesssim \alpha$ with high probability.

Proof: Let $(k,l) \in \arg\max_{k',l'} |\Sigma_{k'l'} - \Sigma_{k'l'}^*|$, i.e. $|\Sigma_{kl} - \Sigma_{kl}^*| = \|\mathbf{\Sigma} - \mathbf{\Sigma}^*\|_{\infty}$. For the sake of contradictory, assume that $\Delta_{kl} \coloneqq \Sigma_{kl} - \Sigma_{kl}^* > 3\alpha/2$. We can see that

$$\partial g_{kl}(\mathbf{\Sigma})$$

=Conv
$$\{\pm \lambda, 1 \pm \lambda\}$$
 - $\frac{4}{\alpha} \cdot \frac{1}{n} \sum_{i=1}^{n} \rho'_{\alpha} (\Delta_{kl} + \Sigma_{kl}^* - x_{ik} x_{il})$

Since Σ lies in the interior of the feasible region, $\mathbf{0} \in \partial g_{kl}(\Sigma)$. Similar to our argument in Proposition 5, we have

$$(1/n)\sum_{i=1}^{n} 1(|\Sigma_{kl}^* - x_{ik}x_{il}| \le \alpha/2) > 2/3$$

with high probability. Let $\mathcal{G}_{kl} := \{i \in [n] : |\Sigma_{kl}^* - x_{ik}x_{il}| \le \alpha/2\}.$

$$\frac{1}{n} \sum_{i=1}^{n} \rho_{\alpha}' (\Delta_{kl} + \Sigma_{kl}^* - x_{ik} x_{il})$$

$$= \frac{1}{n} \sum_{i \in \mathcal{G}_{kl}} \rho_{\alpha}' (\Delta_{kl} + \Sigma_{kl}^* - x_{ik} x_{il})$$

$$+ \frac{1}{n} \sum_{i \notin \mathcal{G}_{kl}} \rho_{\alpha}' (\Delta_{kl} + \Sigma_{kl}^* - x_{ik} x_{il})$$

$$> 2\alpha/3 - \alpha/3 = \alpha/3$$

where the last inequality follows because for $i \in \mathcal{G}_{kl}$, $\Delta_{kl} + \Sigma_{kl}^* - x_{ik}x_{il} \geq 3\alpha/2 - \alpha/2 = \alpha$. Combining this with (2), we have

$$\partial g_{kl}(\mathbf{\Sigma}) < 1 + \lambda - \frac{4}{\alpha} \cdot \alpha/3 = \lambda - 1/3 < 0.$$
 (3)

The last inequality follows with $\lambda \asymp \sqrt{\log d/n}$ given $n \gtrsim \log d$, which contradicts $0 \in \partial g_{kl}(\Sigma)$. Similarly, the case for $\Delta_{kl} \coloneqq \Sigma_{kl} - \Sigma_{kl}^* < -3\alpha/2$ also leads to contradictory.

Lemma 2. Any optimal solution Σ to (1) with $f(\Sigma) = f(\widehat{\Sigma}^+) + \tau d$ satisfies $\|\Sigma - \Sigma^*\|_{\infty} \lesssim \alpha$ with high probability.

Proof: Let $(k,l) \in \arg\max_{k',l'} |\Sigma_{k'l'} - \Sigma_{k'l'}^*|$, i.e. $|\Sigma_{kl} - \Sigma_{kl}^*| = \|\Sigma - \Sigma^*\|_{\infty}$. For the sake of contradictory, assume that $\Delta_{kl} \coloneqq \Sigma_{kl} - \Sigma_{kl}^* > 3\alpha/2$. Let

$$\partial g_{kl}^{-}(\mathbf{\Sigma}) := \lim_{h \to 0^{+}} \frac{g(\mathbf{\Sigma} - h\mathbf{E}_{kl}) - g(\mathbf{\Sigma})}{h}.$$
 (4)

Then

$$\partial g_{kl}^{-}(\mathbf{\Sigma}) = -1 \pm \lambda + \frac{4}{\alpha} \cdot \frac{1}{n} \sum_{i=1}^{n} \rho_{\alpha}'(\Delta_{kl} + \Sigma_{kl}^* - x_{ik}x_{il}) \tag{5}$$

and given Σ is an optimal solution to (1), we must have $\Sigma - hE_{kl} \in S$ for positive and sufficiently small h, thus $g(\Sigma - hE_{kl}) - g(\Sigma) \leq 0$. Hence (4) implies $\partial g_{kl}^-(\Sigma) \leq 0$

However, with the same argument as in Lemma 1, $\partial g_{kl}^-(\Sigma) > 1/3 - \lambda > 0$, which is a contradictory.

In the following Theorem, we combine Lemma 1 and Lemma 2 to conclude that $\|\widetilde{\Sigma} - \Sigma^*\|_{\infty} \leq \alpha$.

Theorem 3. $\left\|\widetilde{\Sigma} - \Sigma^*\right\|_{\infty} \leq 3\alpha/2 + 4\tau d/\alpha$ with high probability. By taking $0 < \tau \lesssim \alpha^2/d$, we have $\left\|\widetilde{\Sigma} - \Sigma^*\right\|_{\infty} \lesssim \alpha$.

Proof: Recall that

$$\widehat{\boldsymbol{\Sigma}}^+ \in \arg\min_{\boldsymbol{\Sigma} \succeq \boldsymbol{0}} f(\boldsymbol{\Sigma}) \tag{6}$$

and that

because of (8).

$$\widetilde{\Sigma} \in \arg\min_{\Sigma \succeq 0} f(\Sigma) - \tau \log \det \Sigma.$$
 (7)

We can view (7) as the log-barrier relaxation of (6), and $\hat{\Sigma}$ as a point on the central path towards $\hat{\Sigma}^+$. Then it follows from the convergence of central path that

$$f(\widetilde{\Sigma}) \le f(\widehat{\Sigma}^+) + \tau d.$$
 (8)

Hence, by combining this with Lemma 1 and Lemma 2,

$$\begin{split} & \left\| \widetilde{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}^* \right\|_{\infty} + \frac{4}{\alpha} \left(\tau d + f(\widehat{\boldsymbol{\Sigma}}^+) - f(\widetilde{\boldsymbol{\Sigma}}) \right) \\ & \leq 3\alpha/2 + \frac{4}{\alpha} \left(\tau d + f(\widehat{\boldsymbol{\Sigma}}^+) - f(\boldsymbol{\Sigma}_{\tau}) \right) \\ & \leq 3\alpha/2 + 4\tau d/\alpha. \end{split}$$

where Σ_{τ} is any optimal solution to (1), and the last inequality follows from $f(\widehat{\Sigma}^+) \leq f(\Sigma_{\tau})$. Finally,

$$\left\|\widetilde{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}^*\right\|_{\infty} \le \left\|\widetilde{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}^*\right\|_{\infty} + \frac{4}{\alpha} \left(\tau d + f(\widehat{\boldsymbol{\Sigma}}^+) - f(\widetilde{\boldsymbol{\Sigma}})\right)$$

With $\|\widetilde{\Sigma} - \Sigma^*\|_{\infty} \lesssim \alpha$, the rest of the proof follows immediately, thus $\widetilde{\Sigma}$ enjoys the same statistical convergence rate as $\widehat{\Sigma}^+$, which is minimax optimal.