Given zero-mean samples x;, ¢ = 1,...,n from a heavy-
tailed distribution, define

1 n
Lo(X) = E - E Pa(Xke — TikTie)
ke | i=1

with p, : R — R a Huber loss function defined as

z%/2 if |z] < «,
pa(x) = 2 ;
alz] —a?/2 if |z| > a.
Further, define
S OMN= argmin{La(E)+/\||E|‘1,off} M

. ot . ..
In this draft, we want to show X achieves the minimax
optimal statistical rate for robust sparse covariance estimation.

I. THEORETICAL RESULTS

We denote the underlying true covariance matrix by 3*.
Let.S = {(z,j) | Z;*j # 0} be the support set of 2*. and s
be its cardinality, i.e., s = |S|. In the following, we impose
some mild conditions on the true covariance matrix X" and
the distribution of the i.i.d. samples x;, i = 1,...,n.

Assumption 1. x; € R? is a heavy-tailed random variable
with zero mean, i.e. E[z;;] = 0 and E [|zi;|*] < o2 for all
1 < 3 < d with some positive o.

Remark 2. Assumption 1 immediately implies that there exists
constant ' > 0, such that E {(E,’;l — xik:cil)ﬂ < K for all
k,l € [d].

Lemma 3. Ler 3 € R pe any estimator to the true
covariance matrix X*. Assume ||V Ly (%) < B always
0

hold, with some § = O(1). Take o« = \/Kn/logd. If the

sample size satisfies n > logd, then

< Vlogd/n + B )

oo

holds with high probability.
Proof: For fixed k, [, let 0 = (f))kl and define

S

1 n
U(0) = EZp&(G—xikxﬂ), 0 cR.
i—1

Note that ‘\11(5)‘ = ‘(VLa(fJ))k‘ < [ always hold. In
addition, it is easy to verify the inequality that

—log(1 —x +2?) < pi(z) <log(1 +x+2?)  (3)
By (3) and the fact that o~ tp, (t) = p}(t/a),
Eeln/o)¥0) — T et (0= ara)
i=1

E {1 +a (0 — zipmy) +a % (0 — wikwil)Q}
1 (4)

{1 +al(0-35) + a2 {(9 i)+ KH

<

—.

K2

IN
=

< exlp [na_l 6 —%5) +na? {(9 -5+ KH .

.
Il

Similarly, it can be shown that

Ee—(n/a)-¥(0)

< exp [—na_l (0 —5,) + na2 {(9 )+ KH .

(5)
For n € (0,1), define
B_(0)=(0— i) + {(0 = i) + K | Ja— (a/n)logn
Bi(9) == (0= Si)) + {(0 =)’ + K } Ja+ (a/n) log
Together, (4), (5) and Markov’s inequality imply
Pr(¥(0) > B_(#)) < e "B-(0)/a [ Ren/e)¥(0) <

and Pr(¥(0) < B, (0)) < e "B+O/a e/ ¥O) <
Let 04 be the smallest solution of the quadratic equation
By (04+) = B, and 6_ be the largest solution of the quadratic
equation B_(6_) = —f. We need to check that §_ and 6,
are well-defined. Let A_ and A, denote the discriminant

of B_(d) = —f and B4(0) = f, respectively. Since

a = /Kn/logd, 3 = O(1) and by taking n > logd,
n = 1/d3, we have

Ao =1-(4/a) (K/a—(a/n)-logn+ ) >0,

which implies that 6_ is well-defined as a solution to B_(6) =
—f on (X5, — a/2,%5,). Similarly, 6, is also well-defined.
Then, with at least 1 — 27 probability,

\11(9_;,_) > B+(9+) = ﬁ and \11(9_) < B_(6‘_) = —B

Recall that ’\I/(é\)‘ < [ always hold, and given that ¥(0) is

-~

nondecreasing, U(0_) < ¥() < ¥(0) immediately implies
0. <b<0,.

Now we estimate #_ and 6. Notice that by convexity, the
following holds for all 6 € (X}, — a/2,%7,):

B_(0) < (1/2) - (6 — ) + B-(Z5),
which immediately implies that
0 — %5 > ~2(K/a— (a/n)logn + B).

It can be seen that assuming B () — f = K/a + (a/
n)logn — B > 0, we have 0, € (Z},,X5, +a/2), and
similarly

0+ — Xk < 2(K/a+ (a/n)logn — B). (6)

Otherwise if B4 (64) — 8 <0, then 6 < 0. Combining this
with (6), we have

6. — Sy < max {2 (K/a + (a/n)logy - 8),0}.
Therefore, with 0_ < 0 <0,
< 2(K/a — (a/n)logn + ).

With 7 = 1/d® and the union bound, we have that with at
least 1 — 2/d probability, Hf) - Z*H < Vlogd/n+p5. ®

‘5-2;;1

Proposition 4. Let S denote an e-optimal solution to (1).
Then, ¥ € X + C(l), where | = 4s'/2. Further, assume



HZNJ — 3" < /2. Conditioned on the event & (a/2,1/2)N
{IIVLA ()] +€ < 0.5},

Hf:—z:*

. <3Xs'?  and Hf) -3

< 12)s.
1

Proposition 4 gives the deterministic interpretation of
Theorem 7. In the following propositions we will analyze
the probability of the conditioned event & (a/2,1/2) N
{[[VLa(E")||, + € < 0.5} mentioned in Proposition 4.

oo

Proposition 5. Suppose that Assumption 1 holds. Recall that
K is the constant defined in Remark 2. Assume n 2 logd.
Then, for any r € (0,1) and C' > 0,

(VLa(8)=VLa(E"), B—%") > min {x, £/2C} |E — =*||>

holds uniformly for all ¥ € X* + B>®(Ca) with high
probability.

Proof: Let Dy = (1/n) Y0, 1(155, — ziwza| < o/2).
By Chebyshev’s inequality,

E[Dw] = Pr (|25, — zanza| < a/2) > 1-4K/a? > (1+k)/2.

The last inequality holds because 4K /a? < (1 — k) /2, which
follows from n > logd.

For each fixed k, [ € [d], let X; = 1(|ZF;, — zinzal < o/2).
To invoke Bernstein’s inequality, compute

Var[X;] = Pr(|2};, — zipza| < «/2)
(1= Pr(|Si, — zinal < 0/2))
<1/4
and with |X; — E[X;]| <1,
E|X; - EXi]|' <E|X; - E[X;]]* 1< 1/4.

Therefore, with Bernstein’s inequality

Pr < Z{XZ— —EX}H > (1- H)n/2>
(1 —k)?n?/8 B (1—r)’n
S2exp (_n/4+ = /i)n/2> =2-exp (_ 6—4r )
and
Pr{Dkl < Ii}
<Pr{|Dn —E[Dy]| > (1 - x)/2}
:Pr{ (1/n) Z{Xz -E[Xi]} > (1~ 5)/2}
(1_— K)*n
<2 exp (‘W) '

With union bound we have

1—k)*n
P in D < 2d*- —(7 1/d
r[n}illn kl<l€:|_ exp(  in >< /d,

where the last inequality follows from n > logd. Let Gy ==
{i € [n] : |Z5, —xikzal < «/2}. Under the event that
ming ; Dy > kK,

1 & * i
n Z{PQ(EM — in@it) — Po Sk — zakwa)} - (Zw — Siy)
i=1

1 n % *
n Z {p6, (B — zirwar) — po(Bhy — ziwwa) } - (Ea — Xjy)
1€Gk;

Y

Y

1~ . . .
" Z min {|En — X5, a/2} - [En — 2|
i€Gk1

1 n

Z Z min {1,1/2C} (Zp — £5;)2
niegkz

> kmin {1,1/2C} (Zg — T5)?

v

The second last inequality holds since 3 € 3*+B>*(C«a) im-
plies a/2 > |X5; — X};| /2C, and the last inequality follows
from |G| /n = Dy,. Therefore

(VIa(E) = VLo(Z7), 5 — 57
1 n

=> - > {0 Bkt — wiwa) — po(Shy — winwi)} - (S — i)
k,l =1

>k min{1,1/2C} - |5 - *||7

with at least 1 — 1/d probability. [ ]

Proposition 5 implies that for any x € (0,1) and C > 0,
with n > logd, event & (C,min {k, x/2C}) happens with
high probability.

Proposition 6. Suppose that Assumption 1 holds. Let K be
the constant defined in Remark 2. Assume o = \/Kn/logd,
then

. Klogd
IVLa(8)] < 8/ =2 )
with at least 1 — 2/d probability.
In Proposition 6, @) indicates that
{IIVL4(X")||, +€ < 0.5\} happens with high probability

if we take A < y/logd/n and € < /logd/n.
Theorem 7. (minimax-optimal rate) Suppose that Assumption

1 holds. Take A < +/logd/n and let « = \/Kn/logd, € <

V0ogd/n. If the sample size satisfies n > logd, then

slogd logd

Hfﬁ—iﬁ <s

1 n

< and H§3+ -x
F

n

hold simultaneously with high probability (w.h.p.).

Proof: The proof combines Proposition 4 with Lemma

3, Proposition 5 and Proposition 6. To invoke Proposition 4,
. . ot

we first notice that given HVLQ(E )+ AE|| < e for some

E e (?Hfﬁ’ , we must have HVLJfﬁ)H <2\ +e€

1,off
always hold. Lemma 3 indicates that
Hfﬁ—E* < Vdogd/n+ 2\ + e < /logd/n < a2

where the last inequality hold with n > logd.



VL=, < 8yKlogd/n.

By Proposition 6,

With ¢ < J/logd/n and X =< +/logd/n, event
{|IVL4(X")|| o, +€ < 0.5\} happens with at least 1 — 2/d

probability. Still, with n > logd, Proposition 5 indicates
that & («/2,1/2) happens with high probability. With union
bound, event & (a/2,1/2) N {||[VL.(X")|,, +€ <0.50}
holds with high probability. Under this event and by Proposi-
tion 4,

Hi* _x

< 3Xs'/?2 and Hfﬁ—ﬁ"
F

< 12\s.
1

APPENDIX

Lemma 8. For any ¥ € R¥*? satisfying X5 = 0 and ¢ >0,
provided \ > ||V Lo (Z)sl| . +¢€ any e-optimal solution 3 to
(1) satisfies

-],
<O~ IVLa(D)gl,, - 97!
A+ IVLa(D)sll +6) - || E -2,

Proof: For

VL.(XE) + \E
— log det 3:

e aHf:‘ , define UE) =
1,0ff

€ R4 By convexity of L,(X) and

any =

(VLa(X) = VLa(E), % - ) > 0.
Therefore,
v@El.[E-3) > weE)s-2
=(VLa(2) = VLo (E), E = ) + (VLy(T), X — %)
+(A\E,Z-3)
20 [ VLa(Dsll.. | (€ - s,

- IVLa(D)sl ||E - D5 + 08 E- %)

Moreover, we have

D\ 5)
“\Eg (E = D)) + AEs, (Z - 2)s)
o8- 3], -3 ]S 3]

Together, the last two displays imply

U@ | -5|,

>~ |[|[VLa(E)sll o H(i - 2)8H1 —[VLa(Z)zll H(i - 2)gﬁlllerefore,

[ =2, =@ -]

Since the right-hand side of this inequality does not depend
on E, taking the infimum with respect to 2 € 0 || X on

) 1,0ff
both sides to reach

f:—zH
1

€

> = VLD (€ = D, ~ I1VLa(D)5ll. | - D)5

R Rl R (CR !

Decomposer]—EH as H(E—Z)SH +H(§_2)§ , the
stated result follows iﬁlmediately. ! '
Lemma 9. Conditioned on event {||V Ly ()|, + ¢ < 0.5},

any e-optimal solution X to (1) satisfies X € X+ C(1), where
1 = 452, Moreover, assume ¥ € X +B>(Ca). Then, condi-
tioned on the event & (Ca, k) N{||VL4 ()] + € < 0.5A}

oo

Hi - EHF <kl {/\31/2 +IVLa(Z)s]l, + sl/%}
< 1.5k "As'/2.

Proof: Conditioned on the stated event, Lemma 8 indi-
cates

H(i _E)ng = 3H(§ _E)SHl'

Therefore,

2=, a2 ]E -]
1 F

which implies that 3 € X + C(1). N
Now we prove the second statement. Since 3 — 3 €
B> (Ca), conditioned on event & (Ca, k), we have

(VIo(E) — VLo (E),S — %) > & Hi - EHi ®)

Now we upper bound the right-hand side of (8). For any = €

0 H ZNJ’ , write
1,0ff

(VLo (E) = VLo(E), 2 - %)
—(UE),X-3)— (VL,(), 2 -=) - \E, 2 -%)

2:1_[3

=II; =11y

- ©)
where U (E) := VL, (X) + AE € R?4. We have

W < U@ |(E - s, +IUEDs||E - s

[T < [[VLa(Z)s]lg H(i - 2)SHF
+ VL (E)sl. | (-5,

Turning to II3, decompose AE and »-3 according to SUS
to reach

II; = (AB)s, (T - 2)s) + (AB)s. (T - 2)3)

Since ¥z = 0 and E € 8H§3H o we have ((A\E)g, (
1,0

S
>)s) (D). B5) = )‘H§§H1 = )\H(E—E)ng-

T Y

1 F



Combining (9) with our estimation for II;, Iy and II3, we
have

(VLW(2) = VLo(E), S - %)

<= A= VLD - IUE)LH|E - D)5
+9La(E)sle [ - Ds |+ 10 E)sle]|(E - £)s |
+Ast/? H(i . z)SH

F
Taking the infimum with respect to E € 0 HZN]‘ - on both
,0
sides, it follows that
(VLo () = VLa(%), 2 - %)
< A= VL@l - | E -2y,
ey s (10)
+ {IVLa(Dsllp + 526} | (B - D)s
+ /\81/2 (i — E)SH
F

It follows from ¥ € X + B> (Ca), (8) and (10) that
conditioned on & (Ca, k) N {||VLa(Z)|,, +€ < 0.5A},

i
~ 2
o[2-], <
F
N

Therefore,

=-2|
F

< A2 4 VL (D)sly + 5%} (D

< KTHAsY2 405082} = 1.5k As1/2

A. Proof of Proposition 4

Proof: Hf] - 2*‘ < 3Xs'/2 follows immediately from
Lemma 9 with £ = 3 and C = r = 1/2. Combining this
with 3 € % + C(1), where | = 4s'/2, yields Hf) — E*Hl <
12)s.

B. Proof of Proposition 5

We adopt the following notations for the next stage of proof.
Recall that L, (X) = Zk,f % Yo Pa(Eke — zipwie). Define
B* :=E[VL4(X")], and W* := VL, (X") — E[VL,(XZ")].

Lemma 10. Recall that K is the constant defined in Remark
2. We have |(B*),,| = [E[p},(ew)]] < £ for all k,1 € [d].
Proof: For fixed k,l € [d], let €5 == X}, — xi,T40, then
ElpL (ex)]] = [Bler I (lert| < a) + asgn(ep)I(e] > )]

= |Elew + (asgn(ex) — ex)I(Jew| > o)

= [E{[ex — asgn(en)](Jex| > a)}]

< |E[(lex:| — asgn(er)) I (|ew| > )|
[El(eiy — ) (lera| > )]

«

<

K
< —.
Q@

Therefore, for all k,1

> B (She — wanac)]| <

=1

2=

N 1
(Bl =

e Proof of Proposition 6
Proof: Wy, = & 371y {0 (Shy — wiwie) — B ol (Sf, — zinwie)|}-
Given that |p], (X5, — zikxi)| < o, for all m > 2:
E[p,, (Zke — zikwie)|™
< ™% Varlpg, (S5, — zikie)]
<a™ 2 Var[Sh, — ziwi
<a™?K < o™ 2K -m!/2

The second inequality follows given p!, (-) is 1-Lipschitz. With
Bernstein’s inequality,

(|

> {0 (She — wikwie) — Blpl,(She — ffiwié)]}‘
=1
2 - exp <—

491ogd 2
_2~exp<— 9log ><

> 7\/Kn10gd>

(7v/Knlogd)?/2
Kn+ao-7vKnlogd

<

16 &3

Recall that VL, (X*) = B* 4+ W*, With Lemma 10, we have

[B*||. < £ < \/Klogd/n. Combing the two parts together
and with the union bound, we have

IVE0(5) < 8/ 58

with at least 1 — 2/d probability.



