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I. INTRODUCTION

[Covariance matrix estimation]

Modern multivariate data analysis poses a fundamental

problem: the estimation of covariance matrices. This esti-

mation finds widespread application across numerous fields,

including statistics, biology, finance, signal processing, and

machine learning. As an instance, numerous dimension reduc-

tion techniques rely on the prior estimation of a covariance

matrix from a given set of data points. These techniques

include principal component analysis [1] as well as linear

and quadratic discriminant analysis [2]. A classical way to

estimate covariance matrices is to use the sample covariance

matrix. However, the sample covariance matrix suffers from

poor finite sample performance when data is heavy-tailed as

illustrated in [papers]. [Should we introduce this later, when

we have explained what is “heavy-tailedness”?]

[why robustness/outliers] However, theoretical properties

of large covariance estimators discussed in the literature often

hinge heavily on the Gaussian or sub-Gaussian assumption.

Given that data from fields including genomic studies and

quantative finance usually do not follow the assumed Gaussian

or sub-Gaussian shape, such an assumption is typically very

restrictive in practice. It is therefore imperative to develop

robust inferential procedures that are less sensitive to the dis-

tributional assumptions. Heavy-tailed distribution1 is a viable

model for data contaminated by outliers that are typically

encountered in applications. [3] demonstrates the concept of

tail-robustness: Due to heavy-tailedness, the probability that

some observations are sampled far away from the “true”

parameter of the population is nonnegligible. These outlying

data points are referred as stochastic outliers. A procedure that

is robust against the stochastic outliers, evidenced by its better

finite-sample performance than a nonrobust method, is called a

tail-robust procedure. The tail robustness is different from the

classical notion of robustness that is often characterized by the

breakdown point [4]. There are estimators that can be applied

to more general robust scenarios, where tail-robustness and

breakdown properties are simlutaneously taken into account,

see [5]. Nevertheless, we will follow the approach of tail-

robustness, which is a concept that combines robustness and

finite-sample (nonasymptotic) error bounds.

1The distribution of a random variable X is said to be heavy-tailed if the
moment generating function of X is infinite for all t > 0, that is, EetX = ∞

for all t > 0. Hence we can only assume weaker moment conditions (for
instance, EX4 < ∞) for heavy-tailed distributions.

[Robust covariance: existing methods]

The work of [6] triggered a trend of tail-robust estimators,

which are featured by tight nonasymptotic deviation analysis,

rather than mean squared errors. Lam (2016) [which is a

manuscript] further generalizes the method in [6] to accomo-

date even weaker moment assumptions.

[7] combined robust estimates of the first and second mo-

ments to obtain covariance estimators. To avoid the accumu-

lated error from estimating the first and second moments, [3]

proposed a pairwise-difference-based elementwise truncation

method that adopts the idea of using U-statistics in robust

estimation from [8]. Another spectrumwise truncation method

is also proposed by Minsker (2018), yielding deviation bounds

in operator norm.

Pilot estimators:

By exploiting a bijective mapping between Pearson correla-

tion and Kendall’s tau or Spearman’s rho dependence measures

that hold for elliptical distributions, [9] and [10] both proposed

rank-based estimation of correlation matrices, which can be

combined with marginal standard deviations estimated via the

method in [6] to obtain a covariance estimate as illustrated

in [11]. Huber’s M-Estimator (Huber1968) with a diverging

robustification parameter as specified in [12] has achieved the

optimal deviation bound in ℓ∞-norm, assuming only fourth

moment exists for the distribution. Another method based on

the median-of-means (MOM) technique [13][14][15] avoids

the tuning of robustification parameters and can be tuning-

free by fixing the number of groups, but requires stronger

assumptions, e.g. existence of moments of order six.

[why sparsity/high-dimensional]

In covariance estimation problems, the number of parame-

ters to be estimated grows quadratically with the dimension of

the covariance matrix. To reduce the number of parameters to

be estimated, one of the most popular assumptions is sparsity.

[7], [16]

In short: to deal with high-dimensionality, there are ways

including the effective rank for sparsity in the spectral [papers]

and the canonical definition of sparsity in coefficients. Large

dimensional, thresholding covariance matrix estimator, PD

covariance estimator...Another line of work follows a slightly

different assumption on the so-called weak sparsity, which

imposes a uniform ℓq norm bound on each row or column

of the covariance matrix...?

[in this paper, we solve the robust XXX]

The square-loss ℓ1-regularized sparse covariance estimator

based on the sample covariance matrix (see [17], [18] and [19])

has been extensively studied for estimating sparse covariance

matrices and is proved to achieve the minimax optimal statis-

tical rate under subgaussian data. Given that the unconstrained
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square-loss ℓ1-regularized sparse covariance estimator can be

obtained using the soft thresholding operator over the sample

covariance matrix [20], a common method for estimating

sparse covariance matrix under heavy-tailed data is to first

introduce a pilot estimator2 as a robust substitution of the

sample covariance matrix, then apply thresholding to the pilot

estimator as in [7](adaptive thresholding over kendall’s tau,

Huber’s M, MoM), [21](adaptive thresholding over MoM) and

[22](hard thresholding over Maronna’s), or compute square-

loss ℓ1-regularized sparse covariance estimator based on the pi-

lot estimator as in [23] (a quaitile-based pilot estimator). Note

that directly applying thresholding to the sample covariance

matrix ([16]) or using the square-loss ℓ1-regularized sparse

covariance estimator based on the sample covariance matrix

([17]) results in a suboptimal statistical rate for heavy-tailed

data.

[contribution of this paper can be summarized as follows:]

By looking into the tail-robust sparse estimation procedures

above, we can see that they proceed in two separate steps

bridged by an intermediate pilot estimator. In the following

discussions, we will combine the two separate steps into a

single-step Huber-loss ℓ1-regularized sparse covariance esti-

mator that not only is a pilot estimator, but also achieves

the minimax optimal rate under high-dimensional heavy-tailed

data.

Meanwhile, we will point out a simple yet general approach

that turns any pilot estimator into a positive-definite sparse

covariance estimator, with the idea inspired by [18] and used

for a specific pilot estimator in [23]. In other words, we will

demonstrate that there is little gap between a pilot estimator

and a positive-definite sparse covariance estimator. Therefore,

if we want our proposed estimator to further obtain positive-

definiteness, we can easily convert it into a positive-definite

sparse covariance estimator while retaining other desirable

properties.

[the structure]

XXX

Finally, we will evident via simulation that our estimator

achieves the desired rate.

A. Notations

The following notation is adopted. Standard lower-case or

upper-case letters stand for scalars and boldface lower-case

(upper-case) letters denote vectors (matrices). Both Xij and

[X]ij denote the (i, j)-th entry of the matrix X. R+ denotes

the set of non-negative real numbers, Rm×n denotes the set of

real m×n matrices. 0 and 1 stand for the all-zero and all-one

vector/matrix, respectively. I stands for the identity matrix.

X ≻ 0 (X � 0) means X is positive definite (semidefinite).

x ≥ 0 denotes each element of x is non-negative.

Let ‖X‖∞ = maxk,l |Xkl| and ‖X‖min = mink,l |Xkl|. Let

‖X‖1,off =
∑

k 6=l |Xkl| denote the sum-absolute-value norm

for all entries and for off-diagonals. We write [d] for the set

{1, 2, . . . , d} and ⌊x⌋ for the largest integer not exceeding x.

For an index set E , we use |E| to denote its cardinality, E to

2Here we refer to the pilot estimator as a tail-robust estimator that achieves
a certain deviation bound in ℓ∞-norm, which follows the terminology in [7].

denote its complement. Use XE to denote the matrix whose

(i, j)-th entry is equal to Xij if (i, j) ∈ E , and zero otherwise.

Let A ◦ B denote the Hadamard product between matrix A

and B. Let ∂f(·) denote the subdifferential of a multivariate

function f .

Let sgn(x) denote the sign of variable x, i.e., sgn(x) =
x/ |x|. For functions f(n) and g(n), we denote f(n) > g(n)
if f(n) ≤ Cg(n), f(n) ? g(n) if f(n) ≥ cg(n) and f(n) ≍
g(n) if cg(n) ≤ f(n) ≤ Cg(n) for some positive constants c
and C.

II. PROBLEM FORMULATION

A. Thresholding Estimator

XXX

B. Problem Formulation

Given zero-mean samples xi, i = 1, . . . , n from a heavy-

tailed distribution, define

Lα(Σ) :=
∑

k,ℓ

1

n

n∑

i=1

ρα(Σkℓ − xikxiℓ)

with ρα : R → R+ a Huber loss function defined as

ρα(x) =

{
x2/2 if |x| ≤ α,

α |x| − α2/2 if |x| > α.

Further, define

Σ̂ ∈ argmin
Σ

{
Lα(Σ) + λ ‖Σ‖1,off

}
(1)

In this paper, we want to show Σ̂ achieves the minimax

optimal statistical rate for robust sparse covariance estimation.

Next, we introduce the pairwise difference approach:XXX

The pairwise difference approach is typical in literature,

with XXX

III. THEORETICAL RESULTS

We denote the underlying true covariance matrix by Σ
∗.

Let S = {(i, j) | Σ∗
ij 6= 0} be the support set of Σ

∗ and s
be its cardinality, i.e., s = |S|. In the following, we impose

some mild conditions on the true covariance matrix Σ
∗ and

the distribution of the i.i.d. samples xi, i = 1, . . . , n.

Assumption 1. xi ∈ Rd is a heavy-tailed random variable

with zero mean, i.e. E [xij ] = 0 and E
[
|xij |4

]
≤ σ2 for all

1 ≤ j ≤ d with some positive σ.

Remark 2. Assumption 1 immediately implies that there

exists constant K > 0 that only depends on σ, such that

E

[
(Σ∗

kl − xikxil)
2
]
≤ K for all k, l ∈ [d]. Also note that a

scaling scheme of K with respect to d is explicitly assumed.

In other words, K also depends on d.

A typical assumption on the heavy-tailed distribution is

the fourth moment condition in assumption 1, which is

adopted by robust pilot estimators, including the truncation

methods and their M-Estimation counterparts from [3], the

(adaptive) generalized thresholding methods from [24][7][21].

Other variants of the fourth moment condition include the
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polynomial-tail condition in ℓ1-regularized estimators [19][18]

and the finite kurtoses condition in [3][25][8][5]. The fourth

moment assumption is justified in scenarios where the data is

subject to heavy-tailed and asymmetric errors. For instance,

it is widely known that financial returns typically exhibit

heavy tails, and [26] provides further evidence showing that a

Student’s t-distribution with four degrees of freedom displays

a tail behavior similar to many asset returns. Another method

based on the median-of-means (MOM) technique [13][14][15]

do not need the tuning of thresholding parameters but requires

stronger assumptions, namely, existence of moments of order

six. (should I further explain that results obtained under <4

moment assumptions do not achieve the minimax optimal

rate?)

The estimator proposed by [23] overcomes heavy-tailed

high-dimensional data and achieves the minimax optimal

statistical rate, but their result hinges on an elliptical-shape

assumption that is only known to hold for pair-elliptically

distributed random data.

Lemma 3. Assume

∥∥∥∇Lα(Σ̂)
∥∥∥
∞

<
√
Kǫn,d holds with ǫn,d

to be a deterministic bounded sequence. Let α ≍
√

Kn/ logd.

Take the sample size n ? log d, then
∥∥∥Σ̂−Σ

∗
∥∥∥
∞

>
√
K log d/n+

√
Kǫn,d (2)

holds with high probability.

Proof: For fixed k, l, let θ̂ := (Σ̂)kl and define

Ψ(θ) :=
1

n

n∑

i=1

ρ′α(θ − xikxil), θ ∈ R.

Note that

∣∣∣Ψ(θ̂)
∣∣∣ =

∣∣∣
(
∇Lα(Σ̂)

)
kl

∣∣∣ <
√
Kǫn,d always hold.

In addition, it is easy to verify the inequality that

− log(1 − x+ x2) ≤ ρ′1(x) ≤ log(1 + x+ x2) (3)

By (3) and the fact that α−1ρ′α(t) = ρ′1(t/α),

Ee(n/α)·Ψ(θ) =

n∏

i=1

Eeρ
′

1((θ−xikxil)/α)

≤
n∏

i=1

E

{
1 + α−1 (θ − xikxil) + α−2 (θ − xikxil)

2
}

≤
n∏

i=1

[
1 + α−1 (θ − Σ∗

kl) + α−2
{
(θ − Σ∗

kl)
2 +K

}]

≤ exp
[
nα−1 (θ − Σ∗

kl) + nα−2
{
(θ − Σ∗

kl)
2
+K

}]
.

(4)

Similarly, it can be shown that

Ee−(n/α)·Ψ(θ)

≤ exp
[
−nα−1 (θ − Σ∗

kl) + nα−2
{
(θ − Σ∗

kl)
2
+K

}]
.

(5)

For η ∈ (0, 1), define

B−(θ) = (θ − Σ∗
kl) +

{
(θ − Σ∗

kl)
2
+K

}
/α− (α/n) log η

B+(θ) = − (θ − Σ∗
kl) +

{
(θ − Σ∗

kl)
2
+K

}
/α+ (α/n) log η

Together, (4), (5) and Markov’s inequality imply

Pr (Ψ(θ) > B−(θ)) ≤ e−nB−(θ)/α · Ee(n/α)·Ψ(θ) ≤ η,

and Pr (Ψ(θ) < B+(θ)) ≤ e−nB+(θ)/α · Ee−(n/α)·Ψ(θ) ≤ η.

Let θ+ be the smallest solution of the quadratic equation

B+(θ+) =
√
Kǫn,d, and θ− be the largest solution of

the quadratic equation B−(θ−) = −
√
Kǫn,d. We need to

check that θ− and θ+ are well-defined. Let ∆− and ∆+

denote the discriminant of equation B−(θ) = −
√
Kǫn,d and

B+(θ) =
√
Kǫn,d, respectively. Since α ≍

√
Kn/ log d,

ǫn,d = O(1) and by taking n ? log d, η = 1/d3, we have

B−(Σ
∗
kl − α/2) =− α/4 +K/α− (α/n) log η < −

√
Kǫn,d

B−(Σ
∗
kl) =K/α− (α/n) log η > −

√
Kǫn,d

which implies that θ− is well-defined as a solution to B−(θ) =
−
√
Kǫn,d on (Σ∗

kl − α/2,Σ∗
kl). Similarly, θ+ is also well-

defined. Then, with at least 1− 2η probability,

Ψ(θ+) ≥ B+(θ+) =
√
Kǫn,d and Ψ(θ−) ≤ B−(θ−) = −

√
Kǫn,d.

Recall that

∣∣∣Ψ(θ̂)
∣∣∣ <

√
Kǫn,d always hold, and given that

Ψ(θ) is nondecreasing, Ψ(θ−) < Ψ(θ̂) < Ψ(θ+) immediately

implies θ− ≤ θ̂ ≤ θ+.

Now we estimate θ−. Notice that by convexity, the following

holds for all θ ∈ (Σ∗
kl − α/2,Σ∗

kl):

B−(θ) ≤ (1/2) · (θ − Σ∗
kl) +B−(Σ

∗
kl),

which immediately implies that

θ− − Σ∗
kl ≥ −2

(
K/α− (α/n) log η +

√
Kǫn,d

)
.

To estimate θ+, it can be seen that assuming B+(θ+) −√
Kǫn,d = K/α + (α/n) log η −

√
Kǫn,d > 0, we have

θ+ ∈ (Σ∗
kl,Σ

∗
kl + α/2), and similarly

θ+ − Σ∗
kl ≤ 2

(
K/α+ (α/n) log η −

√
Kǫn,d

)
. (6)

Otherwise if B+(θ+)−
√
Kǫn,d ≤ 0, then θ+ ≤ 0. Combining

this with (6), we have

θ+ − Σ∗
kl ≤ max

{
2
(
K/α+ (α/n) log η −

√
Kǫn,d

)
, 0
}
.

Therefore, with θ− ≤ θ̂ ≤ θ+,
∣∣∣θ̂ − Σ∗

kl

∣∣∣ ≤ 2
(
K/α− (α/n) log η +

√
Kǫn,d

)
.

With η = 1/d3 and the union bound, we have that with at least

1− 2/d probability,

∥∥∥Σ̂−Σ
∗
∥∥∥
∞

>
√
K log d/n+

√
Kǫn,d.

Proposition 4. Let Σ̃ denote any solution to (1). Then,

Σ̃ ∈ Σ
∗ + C(l), where l = 4s1/2. Further, assume∥∥∥Σ̃−Σ

∗
∥∥∥
∞

≤ α/2. Conditioned on the event E1(α/2, 1/2)∩
{‖∇Lα(Σ

∗)‖∞ ≤ 0.5λ},
∥∥∥Σ̃−Σ

∗
∥∥∥

F
≤ 3λs1/2 and

∥∥∥Σ̃−Σ
∗
∥∥∥

1
≤ 12λs.

Proposition 4 gives the deterministic interpretation of

Theorem 7. In the following propositions we will analyze
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the probability of the conditioned event E1(α/2, 1/2) ∩
{‖∇Lα(Σ

∗)‖∞ ≤ 0.5λ} mentioned in Proposition 4.

Proposition 5. Suppose that Assumption 1 hold. Recall that K
is the constant defined in Remark 2. Assume α ≍

√
Kn/ log d

and take n ? log d. Then, for any κ ∈ (0, 1) and C > 0,

〈∇Lα(Σ)−∇Lα(Σ
∗),Σ−Σ

∗〉 ≥ min {κ, κ/2C} ‖Σ−Σ
∗‖2F

holds uniformly for all Σ ∈ Σ
∗ + B∞(Cα) with high

probability.

Proof: Let Dkl = (1/n)
∑n

i=1 1 (|Σ∗
kl − xikxil| ≤ α/2).

By Chebyshev’s inequality,

E[Dkl] = Pr (|Σ∗
kl − xikxil| ≤ α/2) ≥ 1−4K/α2 > (1+κ)/2.

The last inequality holds because 4K/α2 < (1− κ)/2, which

follows from α ≍
√
Kn/ logd and by taking n ? log d.

For each fixed k, l ∈ [d], let Xi = 1(|Σ∗
kl − xikxil| ≤ α/2).

With Hoeffding’s inequality,

Pr

(∣∣∣∣∣

n∑

i=1

{Xi − E[Xi]}
∣∣∣∣∣ ≥ (1 − κ)n/2

)

≤2 · exp
(
−(1− κ)2n2/(2n)

)
= 2 · exp

(
−(1− κ)2n/2

)

and

Pr {Dkl < κ}
≤Pr {|Dkl − E[Dkl]| ≥ (1 − κ)/2}

=Pr

{∣∣∣∣∣(1/n)
n∑

i=1

{Xi − E[Xi]}
∣∣∣∣∣ ≥ (1− κ)/2

}

≤2 · exp
(
−(1− κ)2n/2

)
.

With union bound we have

Pr

[
min
k,l

Dkl < κ

]
≤ 2d2 · exp

(
−(1− κ)2n/2

)
< 2/d,

where the last inequality follows by taking n ≥ 6 log d/(1 −
κ)2. Let Gkl := {i ∈ [n] : |Σ∗

kl − xikxil| ≤ α/2}. Under the

event that mink,l Dkl ≥ κ,

1

n

n∑

i=1

{ρ′α(Σkl − xikxil)− ρ′α(Σ
∗
kl − xikxil)} · (Σkl − Σ∗

kl)

≥ 1

n

n∑

i∈Gkl

{ρ′α(Σkl − xikxil)− ρ′α(Σ
∗
kl − xikxil)} · (Σkl − Σ∗

kl)

≥ 1

n

n∑

i∈Gkl

min {|Σkl − Σ∗
kl| , α/2} · |Σkl − Σ∗

kl|

≥ 1

n

n∑

i∈Gkl

min {1, 1/2C} (Σkl − Σ∗
kl)

2

≥ κmin {1, 1/2C} (Σkl − Σ∗
kl)

2

The second last inequality holds since Σ ∈ Σ
∗+B∞(Cα) im-

plies α/2 ≥ |Σkl − Σ∗
kl| /2C, and the last inequality follows

from |Gkl| /n = Dkl. Therefore

〈∇Lα(Σ)−∇Lα(Σ
∗),Σ−Σ

∗〉

=
∑

k,l

1

n

n∑

i=1

{ρ′α(Σkl − xikxil)− ρ′α(Σ
∗
kl − xikxil)} · (Σkl − Σ∗

kl)

≥κ ·min {1, 1/2C} · ‖Σ−Σ
∗‖2F

with at least 1− 2/d probability.

Proposition 5 implies that for any κ ∈ (0, 1) and C > 0,

with n ? log d, event E1 (C,min {κ, κ/2C}) happens with

high probability.

Proposition 6. Suppose that Assumption 1 hold. Let K be the

constant defined in Remark 2. Then,

‖∇Lα(Σ
∗)‖∞ ≤

√
6K log d/n+ 6α log d/n+K/α (7)

with at least 1− 2/d probability.

In Proposition 6, (7) indicates that event

{‖∇Lα(Σ
∗)‖∞ ≤ 0.5λ} happens with high probability

if we take α ≍
√
Kn/ log d and λ ≍

√
K log d/n.

Theorem 7. (minimax-optimal rate) Suppose that Assumption

1 holds. Take λ ≍
√
K log d/n and let α ≍

√
Kn/ log d. If

the sample size satisfies n ? log d, then

∥∥∥Σ̂−Σ
∗
∥∥∥

F
>

√
Ks log d

n
and

∥∥∥Σ̂−Σ
∗
∥∥∥
1
> s

√
K log d

n

hold simultaneously with high probability (w.h.p.).

Proof: The proof combines Proposition 4 with Lemma

3, Proposition 5 and Proposition 6. By Proposition 6,

‖∇Lα(Σ
∗)‖∞ .

√
K log d/n given α ≍

√
Kn/ log d.

By taking λ ≍
√
K log d/n, event

{‖∇Lα(Σ
∗)‖∞ ≤ 0.5λ} happens with at least 1 − 2/d

probability.

To invoke Proposition 4, we first notice that given

∇Lα(Σ̂) + λΞ = 0 for some Ξ ∈ ∂
∥∥∥Σ̂
∥∥∥
1,off

, we must have
∥∥∥∇Lα(Σ̂)

∥∥∥
∞

< 2λ always hold. Taking the deterministic

sequence in Lemma 3 to be ǫn,d := λn,d/
√
K >

√
log d/n,

we conclude that
∥∥∥Σ̂−Σ

∗
∥∥∥
∞

>
√
K log d/n+ 2λ ≍

√
K log d/n ≤ α/2,

where the last inequality holds by taking n ? log d.

With n ? log d, Proposition 5 indicates that E1(α/
2, 1/2) happens with high probability. With union bound,

event E1(α/2, 1/2)∩{‖∇Lα(Σ
∗)‖∞ ≤ 0.5λ} holds with high

probability. Under this event and by Proposition 4,

∥∥∥Σ̂−Σ
∗
∥∥∥

F
≤ 3λs1/2 and

∥∥∥Σ̂−Σ
∗
∥∥∥

1
≤ 12λs.

Then it suffices to recall λ ≍
√
K log d/n.

IV. NUMERICAL SIMULATION

XX

V. CONCLUSION

XX
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APPENDIX

Lemma 8. For any Σ ∈ Rd×d satisfying ΣS = 0 and ǫ > 0,

provided λ > ‖∇Lα(Σ)S‖∞, any solution Σ̃ to (1) satisfies
∥∥∥(Σ̃−Σ)S

∥∥∥
1

≤(λ − ‖∇Lα(Σ)S‖∞)−1

· (λ + ‖∇Lα(Σ)S‖∞) ·
∥∥∥(Σ̃−Σ)S

∥∥∥
1

Proof: For any Ξ ∈ ∂
∥∥∥Σ̃
∥∥∥
1,off

, define U(Ξ) =

∇Lα(Σ̃) + λΞ ∈ Rd×d. Optimality condition of (1) implies

infΞ U(Ξ) = 0. By convexity of Lα(Σ):

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉 ≥ 0.

Therefore,

‖U(Ξ)‖∞
∥∥∥Σ̃−Σ

∥∥∥
1
≥ 〈U(Ξ), Σ̃−Σ〉

=〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉+ 〈∇Lα(Σ), Σ̃−Σ〉
+ 〈λΞ, Σ̃−Σ〉

≥0− ‖∇Lα(Σ)S‖∞
∥∥∥(Σ̃−Σ)S

∥∥∥
1

− ‖∇Lα(Σ)S‖∞
∥∥∥(Σ̃−Σ)S

∥∥∥
1
+ 〈λΞ, Σ̃−Σ〉

Moreover, we have

〈λΞ, Σ̃−Σ〉
=λ〈ΞS , (Σ̃−Σ)S〉+ λ〈ΞS , (Σ̃−Σ)S〉
≥λ
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− λ

∥∥∥(Σ̃−Σ)S

∥∥∥
1

Together, the last two displays imply

‖U(Ξ)‖∞
∥∥∥Σ̃−Σ

∥∥∥
1

≥− ‖∇Lα(Σ)S‖∞
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− ‖∇Lα(Σ)S‖∞

∥∥∥(Σ̃−Σ)S

∥∥∥
1

+ λ
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− λ

∥∥∥(Σ̃−Σ)S

∥∥∥
1

Since the right-hand side of this inequality does not depend

on Ξ, taking the infimum with respect to Ξ ∈ ∂
∥∥∥Σ̃
∥∥∥
1,off

on

both sides to reach

0 ≥− ‖∇Lα(Σ)S‖∞
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− ‖∇Lα(Σ)S‖∞

∥∥∥(Σ̃−Σ)S

∥∥∥
1

+ λ
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− λ

∥∥∥(Σ̃−Σ)S

∥∥∥
1

Decompose

∥∥∥Σ̃−Σ

∥∥∥
1

as

∥∥∥(Σ̃−Σ)S

∥∥∥
1
+
∥∥∥(Σ̃−Σ)S

∥∥∥
1
, the

stated result follows immediately.

Lemma 9. Conditioned on event {‖∇Lα(Σ)‖∞ ≤ 0.5λ}, any

solution Σ̃ to (1) satisfies Σ̃ ∈ Σ + C(l), where l = 4s1/2.

Moreover, assume Σ̃ ∈ Σ + B∞(Cα). Then, conditioned on

the event E1 (Cα, κ) ∩ {‖∇Lα(Σ)‖∞ ≤ 0.5λ},
∥∥∥Σ̃−Σ

∥∥∥
F
≤ κ−1

(
λs1/2 + ‖∇Lα(Σ)S‖F

)

≤ 1.5κ−1λs1/2.

Proof: Conditioned on the stated event, Lemma 8 indi-

cates ∥∥∥(Σ̃−Σ)S

∥∥∥
1
≤ 3

∥∥∥(Σ̃−Σ)S

∥∥∥
1
.

Therefore, ∥∥∥Σ̃−Σ

∥∥∥
1
≤ 4s1/2

∥∥∥Σ̃−Σ

∥∥∥
F
,

which implies that Σ̃ ∈ Σ+ C(l).
Now we prove the second statement. Since Σ̃ − Σ ∈

B∞(Cα), conditioned on event E1 (Cα, κ), we have

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉 ≥ κ
∥∥∥Σ̃−Σ

∥∥∥
2

F
(8)

Now we upper bound the right-hand side of (8). For any Ξ ∈
∂
∥∥∥Σ̃
∥∥∥
1,off

, write

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉
= 〈U(Ξ), Σ̃−Σ〉︸ ︷︷ ︸

:=Π1

− 〈∇Lα(Σ), Σ̃−Σ〉︸ ︷︷ ︸
:=Π2

− 〈λΞ, Σ̃−Σ〉︸ ︷︷ ︸
:=Π3

(9)

where U(Ξ) := ∇Lα(Σ̃) + λΞ ∈ Rd×d. We have

|Π1| ≤ ‖U(Ξ)‖∞
∥∥∥(Σ̃−Σ)S

∥∥∥
1
+ ‖(U(Ξ))S‖F

∥∥∥(Σ̃−Σ)S

∥∥∥
F

|Π2| ≤ ‖∇Lα(Σ)S‖F

∥∥∥(Σ̃−Σ)S

∥∥∥
F

+ ‖∇Lα(Σ)S‖∞
∥∥∥(Σ̃−Σ)S

∥∥∥
1

Turning to Π3, decompose λΞ and Σ̃−Σ according to S ∪S
to reach

Π3 = 〈(λΞ)S , (Σ̃−Σ)S〉+ 〈(λΞ)S , (Σ̃−Σ)S〉

Since ΣS = 0 and Ξ ∈ ∂
∥∥∥Σ̃
∥∥∥
1,off

, we have 〈(λΞ)S , (Σ̃ −

Σ)S〉 = 〈(λΞ)S , Σ̃S〉 = λ
∥∥∥Σ̃S

∥∥∥
1

= λ
∥∥∥(Σ̃−Σ)S

∥∥∥
1
.

Therefore,

Π3 ≥ λ
∥∥∥(Σ̃−Σ)S

∥∥∥
1
− λs1/2

∥∥∥(Σ̃−Σ)S

∥∥∥
F

Combining (9) with our estimation for Π1,Π2 and Π3, we

have

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉
≤ − {λ− ‖∇Lα(Σ)‖∞ − ‖U(Ξ)‖∞}

∥∥∥(Σ̃−Σ)S

∥∥∥
1

+ ‖∇Lα(Σ)S‖F

∥∥∥(Σ̃−Σ)S

∥∥∥
F
+ ‖(U(Ξ))S‖F

∥∥∥(Σ̃−Σ)S

∥∥∥
F

+ λs1/2
∥∥∥(Σ̃−Σ)S

∥∥∥
F

Taking the infimum with respect to Ξ ∈ ∂
∥∥∥Σ̃
∥∥∥
1,off

on both

sides, it follows that

〈∇Lα(Σ̃)−∇Lα(Σ), Σ̃−Σ〉
≤ − {λ− ‖∇Lα(Σ)‖∞}

∥∥∥(Σ̃−Σ)S

∥∥∥
1

+ ‖∇Lα(Σ)S‖F

∥∥∥(Σ̃−Σ)S

∥∥∥
F

+ λs1/2
∥∥∥(Σ̃−Σ)S

∥∥∥
F

(10)

It follows from Σ̃ ∈ Σ + B
∞(Cα), (8) and (10) that

conditioned on E1(Cα, κ) ∩ {‖∇Lα(Σ)‖∞ ≤ 0.5λ},

κ
∥∥∥Σ̃−Σ

∥∥∥
2

F
≤

{
λs1/2 + ‖∇Lα(Σ)S‖F

}∥∥∥Σ̃−Σ

∥∥∥
F
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Therefore,

∥∥∥Σ̃−Σ

∥∥∥
F

≤ κ−1
{
λs1/2 + ‖∇Lα(Σ)S‖F

}

≤ κ−1{λs1/2 + 0.5λs1/2} = 1.5κ−1λs1/2

(11)

A. Proof of Proposition 4

Proof:

∥∥∥Σ̃−Σ
∗
∥∥∥

F
≤ 3λs1/2 follows immediately from

Lemma 9 with Σ = Σ
∗ and C = κ = 1/2. Combining this

with Σ̃ ∈ Σ
∗ + C(l), where l = 4s1/2, yields

∥∥∥Σ̃−Σ
∗
∥∥∥

1
≤

12λs.

B. Proof of Proposition 5

We adopt the following notations for the next stage of proof.

Recall that Lα(Σ) =
∑

k,ℓ
1
n

∑n
i=1 ρα(Σkℓ − xikxiℓ). Define

B
∗ := E[∇Lα(Σ

∗)], and W
∗ := ∇Lα(Σ

∗)− E[∇Lα(Σ
∗)].

Lemma 10. Recall that K is the constant defined in Remark

2. We have |(B∗)kl| = |E[ρ′α(ǫkl)]| < K
α for all k, l ∈ [d].

Proof: For fixed k, l ∈ [d], let ǫkl := Σ∗
kℓ − xikxiℓ, then

|E[ρ′α(ǫkl)]| = |E[ǫklI(|ǫkl| ≤ α) + αsgn(ǫkl)I(|ǫkl| > α)]|
= |E[ǫkl + (αsgn(ǫkl)− ǫkl)I(|ǫkl| > α)]|
= |E{[ǫkl − αsgn(ǫkl)]I(|ǫkl| > α)}|
≤ |E[(|ǫkl| − αsgn(ǫkl))I(|ǫkl| > α)]|

≤
∣∣E[(ǫ2kl − α2)I(|ǫkl| > α)]

∣∣
α

<
K

α
.

Therefore, for all k, l

|(B∗)kl| =
1

n

∣∣∣∣∣

n∑

i=1

E[ρ′α(Σ
∗
kℓ − xikxiℓ)]

∣∣∣∣∣ <
K

α
.

C. Proof of Proposition 6

Proof: For each k, l ∈ [d], recall:

W ∗
kl =

1

n

n∑

i=1

{ρ′α(Σ∗
kℓ − xikxiℓ)− E [ρ′α(Σ

∗
kℓ − xikxiℓ)]} .

Given that |ρ′α(Σ∗
kℓ − xikxiℓ)| ≤ α, for all m ≥ 2:

E[ρ′α(Σ
∗
kℓ − xikxiℓ)]

m

≤ αm−2 · Var[ρ′α(Σ
∗
kℓ − xikxiℓ)]

≤ αm−2 · Var[Σ∗
kℓ − xikxiℓ]

≤ αm−2K ≤ αm−2K ·m!/2

The second inequality follows given ρ′α(·) is 1-Lipschitz. With

Bernstein’s inequality, for any t ≥ 0,

Pr

(∣∣∣∣∣

n∑

i=1

{ρ′α(Σ∗
kℓ − xikxiℓ)− E[ρ′α(Σ

∗
kℓ − xikxiℓ)]}

∣∣∣∣∣

≥
√
2Knt+ 2αt

)

≤ 2 · exp
(
− (

√
2Knt+ 2αt)2/2

Kn+ α ·
√
2Knt+ 2α2t

)

= 2 · exp
(
−Kn+ 2α ·

√
2Knt+ 2α2t

Kn+ α ·
√
2Knt+ 2α2t

· t
)

< e−t.

Taking t = 3 log d and in conjunction with the union bound,

Pr
(
‖W∗‖∞ ≥

√
6K log d/n+ 6α log d/n

)
< d−1.

Recall that ∇Lα(Σ
∗) = B

∗+W
∗. With Lemma 10, we have

‖B∗‖∞ < K/α. Combing the two parts together and with the

union bound, we have

‖∇Lα(Σ
∗)‖∞ <

√
6K log d/n+ 6α log d/n+K/α

with at least 1− d−1 probability.
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