There are a few things to mention: If you find a proof to be confusing, don’t hes-
itate to contact me - it might be a mistake or a typo, though I have tried my best
to reduce them. Also, the Lemmas and Theorems in this document sometimes
omit to mention that they are only true for d sufficiently large. Another impor-

d
tant assumption everywhere without being mentioned is that {v;}; U {ai}g%
is linearly independent.

Recall D(vg,, Vky, .- -, Vk,) = {g € Rl g =0l g=---=v] q}.

Let g(vi,ve,...,vN) be the projection of v; to D(v1,...,vy). Easy to see that
this doesn’t vary for different i.

Let A = ||g(v1,va,...,vn)||- Then we have A = (v, e) = (vg,e) --- = (v, e) for
some unit vector e.

Lemma 1 Assume that [(v;,v;)| < 3 % with some fixed 8 > 0 for all

1<i<j<N. Then \=||g(vi,vs,...,0n)| € (\/N}ouv)’ \/NEO(N)).
Proof: We have

N

N = 1 vl < 1Dl = | Do) + 3w

i=1 i#j

v vy -0 < o

Therefore we have \ < 7%0(1\[)
To show A > 7”]\];,0(1\[), notice that

N
g(vi,...,oN) = arg Nmin HZpiviH
> opi=1 =1
i=1

So
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Assumlng {v;}¥ | are linearly independent. Then there exists zo € span{vy,va, ...

such that v zg —y = v 2o — 2y = -+ = vhzg — Ny = 0. Define
vi v
e A .
oh N
So we have VTzg =T, since 2o € span{vy,va,...,vn}, we must have
onllanl < ]| = o YA EDCN 1),

where o is the minimum singular value of V. And we know the following The-
orem in the matrix book:

Theorem 2.7.1 (Lower bound). Let M = (&j)1<i<pii<j<n be annx
p Bernoulli matriz, where 1p < (1 —3§)n for some 6 > 0 (independent
of n). Then with exponentially high probability (i.e. 1 — O(e=") for
some ¢ > 0), one has o,(M) > ¢\/n, where ¢ > 0 depends only on §.

VdV is an N x d Bernoulli matrix. Take § = % (other choices like 1 are also
valid) and there is a corresponding ¢ such that o > ¢vd/vd = c.

Then we have ||zo|| < w'y/c = C with C to be a constant deter-

mined by c.
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B d 327

Given that
we have that C' =~ ﬁ’y = 32\1/5 , that is, ||zo]| < 32\/(;
I had some problem analyzing ¢ because I was stuck at a step in the proof by
Tau which he leaves as an exercise. But I believe that ¢ > 1 . Assuming this is
correct, then C' < f and ||zo|| < 1 is inside the ball.

wlro

The ”proof”’ for an easier case

Write g for g(vi,...,vn). Consider the ¢ > 0 such that ||zg — tg]| = 1. We
now aim to show that the boundary point xy — tg is the optimal solution of
Hnll\m f(x) where f(z) =  max vlz —iy.

Lemma 2 If t > 0 and ||xzg—tg|| = 1, then ||9||(1 32\[C) <t< Hg\l(1+32fc)
Proof: Not hard if notice that the minimum distance from zg to the boundary
is 1 — ||zo]| and the maximum is 1+ ||zg]|. O
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N
Let zg = Z Av; and g = Zplv“ then tg — xg = > (tpi — A\i)v;. Let r
i=1
denote tp — )\ so T =1tp; — )\

Lemma 3 Assuming that |(v;,v;)] < 4/ %g(d) for all ¢ # j, we have r; > 0 for

all 4.
Proof: Assume r; < 0 for some 1.

N N
Since (vi, 35 pjvj) = [lg]|* and (v, 35 Aju;) = iy, we have
j=1 j=1
gt — iy =ri + > (vi,v5)r;
i

Also, with ||r]| < ||tg|| + ||xo]| < ||zol| + 1 + ||zo|] < 16%/36 + 1 we have:

N
1
;| <VN|lr||=VN(—— +
DIl < VNI = VN

Then with the results of Lemma 1 and Lemma 2:
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VN 32v3c 32¢) N 32V3c 7 Ny/N + o(N 32v/3¢
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If we assume ¢ > then we have

16’

Lot Lo 1010g()\/»(7+1)

0< —=
2V N 23 2 V3
That is,
1,1 1 10log(d) ., 1
0< (5 — < N(—=+1
But we know %MN — 0 as d = +o0, contradictory. O

Lemma 4: Assume that |(v;,v;)| < \/%g(d) for all ¢ # j. If t > 0 and
||zo — tg|| = 1, then 2o — tg = arg min f(z). Consequently, f* = f(zo — tg) >

[|=]|<1
N+o(N)
-y 1+ 323&) ~ _O(ﬁ)'




Proof: Let 8f(:lc) be the subgradients of f at x. Then by the first order con-
dition of the solution to a convex problem, the boundary point zg — tg is the

. N
solution if tg—xg € df (xo—tg) = {>_ ayv;i|a; > 0,Vi}. With tg—zp = Zf\;l T,

i=1 n

and since we have shown r; > 0 in Lemma 3, this is obviously true.
Let I(vk,, Uy, - -0k, ) = {zvf @ —k1y = v —kyy = -~ = v & —k,~}. For
the lower bound of f*, given that z — tg € I(v1,...,vy), we have that

fzo —tg) = v (wo — tg) —v = —tvf g = —t[|g|[?

1 ) > \/N—&-O(N)(l 1 )

> — 1+ — +
19l + 5577 N 32730
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Let F(z) = max{d’||Azr||s — 1,m[a}\>[( vz — iv}, then we have F(z) > f(x)
[4S]

i

for all z, so F* > f* = 70(\/%).

Other resulting properties

Lemma 5 Assume that |(v;,v;)| < %g(d) for all 4 # j. Then the minimum

of F(z) must be taken at the boundary of the unit ball B and is unique.

Proof: Recall that R(v;) = {z € RYF(x) = vz — iy} was defined as the
"Realm” of v;. We can generalize the definition of "Realm” to a;’s in the ma-
trix A in the way that R(a;) = {z € RY|F(z) = d°al'z — 1}.

Assume there exists some optimal solution x* € int(B), then with optimality
condition, we have 0 € OF (z*) = Conv{u;|z* € R(u;)}, where u; can be v; or
;.

Given that {v;}¥; U {al}Ef is assumed to be linearly independent, we have
that u; € OF (z*) if and only if z* € R(u;).

If 2* € R(a;) and z* € R(—a;), then we have d°alz* — 1 = —d°al'z* — 1, so
F(z*) = d°al'z — 1 = —1, which contradicts F* > —O(ﬁ) — 0.

Therefore, either a; ¢ OF (z*) or —a; ¢ OF(x*). Consequently, {u;|z* € R(u;)}
is linearly independent, which indicates that 0 ¢ Conv{u;|x* € R(u;)}, contra-
dictory.

Since any optimal solution must be taken at the boundary of the unit ball, if
27 and x3 are two distinct optimal solutions, then by convexity of the prob-
lem, ﬂ% is also an optimal solution, however, % € int(B), contradictory.
Therefore z* is unique. U

N
Lemma 6: Any optimal solution z* must be in |J R(v;).
i=1

Proof: If there exists optimal solution z* € B and € > 0 such that B(z*,¢) N



N _
BN [U R(v;)] = 0, then consider F(z) = d°||Az||oc — 1. Then x* is also an
i=1

optimal solution to the problem minimizing F because F|p(y« ¢ = FlB(I*’E).

Since we already know F(0) = —1 < —O(ﬁ), we have that F(z*) = F(a*) <
F0)=-1x —O(ﬁ), which contradicts the result of Lemma, 4. O



