
There are a few things to mention: If you find a proof to be confusing, don’t hes-
itate to contact me - it might be a mistake or a typo, though I have tried my best
to reduce them. Also, the Lemmas and Theorems in this document sometimes
omit to mention that they are only true for d sufficiently large. Another impor-

tant assumption everywhere without being mentioned is that {vi}Ni=1 ∪ {ai}
⌊ d

2 ⌋
i=1

is linearly independent.

Recall D(vk1 , vk2 , . . . , vkn) = {q ∈ Rd|vTk1
q = vTk2

q = · · · = vTkn
q}.

Let g(v1, v2, . . . , vN ) be the projection of vi to D(v1, . . . , vN ). Easy to see that
this doesn’t vary for different i.
Let λ = ||g(v1, v2, . . . , vN )||. Then we have λ = ⟨v1, e⟩ = ⟨v2, e⟩ · · · = ⟨vN , e⟩ for
some unit vector e.

Lemma 1 Assume that |⟨vi, vj⟩| ≤ β
√

log(d)
d with some fixed β > 0 for all

1 ≤ i < j ≤ N . Then λ = ||g(v1, v2, . . . , vN )|| ∈ (

√
N−o(N)

N ,

√
N+o(N)

N ).
Proof: We have

|Nλ| = |⟨
N∑
i=1

vi, e⟩| ≤ ||
N∑
i=1

vi|| =

√√√√ N∑
i=1

⟨vi, vi⟩+
∑
i ̸=j

⟨vi, vi⟩

≤

√
N +N(N − 1)β

√
log(d)

d
<

√
N + o(N)

Therefore we have λ <

√
N+o(N)

N .

To show λ >

√
N−o(N)

N , notice that

g(v1, . . . , vN ) = arg min
N∑

i=1
pi=1

||
N∑
i=1

pivi||

So

||g(v1, . . . , vN )||2 = min
N∑

i=1
pi=1

||
N∑
i=1

pivi||2 = min
N∑

i=1
pi=1

N∑
i=1

p2i +
∑
i ̸=j

pipj⟨vi, vj⟩

≥ min
N∑

i=1
pi=1

N∑
i=1

p2i −
∑
i ̸=j

pipjβ

√
log(d)

d

=
1

N
−N(N − 1)

1

N2
β

√
log(d)

d
>

N − o(N)

N2

1



Assuming {vi}Ni=1 are linearly independent. Then there exists x0 ∈ span{v1, v2, . . . , vN}
such that vT1 x0 − γ = vT1 x0 − 2γ = · · · = vTNx0 −Nγ = 0. Define

V T =


vT1
vT2
. . .
vTN

 ,Γ =


γ
2γ
. . .
Nγ


So we have V Tx0 = Γ, since x0 ∈ span{v1, v2, . . . , vN}, we must have

σN ||x0|| ≤ ||Γ|| =
√

N(N + 1)(2N + 1)

6
γ

where σN is the minimum singular value of V. And we know the following The-
orem in the matrix book:

√
dV is an N × d Bernoulli matrix. Take δ = 1

2 (other choices like 1
3 are also

valid) and there is a corresponding c such that σN ≥ c
√
d/

√
d = c.

Then we have ||x0|| ≤
√

N(N+1)(2N+1)
6 γ/c = C with C to be a constant deter-

mined by c.
Given that

γ =

√
400k log(d)

d
= 20

√
k log(d)

d
, N = (

1

32γ
)

2
3

we have that C ≈ N
3
2√
3c
γ = 1

32
√
3c
, that is, ||x0|| ≤ 1

32
√
3c
.

I had some problem analyzing c because I was stuck at a step in the proof by
Tau which he leaves as an exercise. But I believe that c ≥ 1

16 . Assuming this is
correct, then C ≤ 1

2
√
3
and ||x0|| < 1 is inside the ball.

The ”proof” for an easier case

Write g for g(v1, . . . , vN ). Consider the t > 0 such that ||x0 − tg|| = 1. We
now aim to show that the boundary point x0 − tg is the optimal solution of
min

||x||≤1
f̂(x) where f̂(x) = max

i=1...N
vTi x− iγ.

Lemma 2 If t > 0 and ||x0−tg|| = 1, then 1
||g|| (1−

1
32

√
3c
) ≤ t ≤ 1

||g|| (1+
1

32
√
3c
).

Proof: Not hard if notice that the minimum distance from x0 to the boundary
is 1− ||x0|| and the maximum is 1 + ||x0||.
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Let x0 =
N∑
i=1

λivi and g =
N∑
i=1

pivi, then tg − x0 =
N∑
i=1

(tpi − λi)vi. Let r

denote tp− λ, so ri = tpi − λi.

Lemma 3 Assuming that |⟨vi, vj⟩| ≤
√

10 log(d)
d for all i ̸= j, we have ri > 0 for

all i.
Proof: Assume ri ≤ 0 for some i.

Since ⟨vi,
N∑
j=1

pjvj⟩ = ||g||2 and ⟨vi,
N∑
j=1

λjvj⟩ = iγ, we have

||g||2t− iγ = ri +
∑
j ̸=i

⟨vi, vj⟩rj

Also, with ||r|| ≤ ||tg||+ ||x0|| ≤ ||x0||+ 1 + ||x0|| ≤ 1
16

√
3c

+ 1 we have:

N∑
i=1

|ri| ≤
√
N ||r|| =

√
N(

1

16
√
3c

+ 1)

Then with the results of Lemma 1 and Lemma 2:

1√
N

(1− 1

32
√
3c

− 1

32c
) =

1√
N

(1− 1

32
√
3c

−N
3
2 γ) ≈ N − o(N)

N
√

N + o(N)
(1− 1

32
√
3c

)−Nγ

≤ N − o(N)

N2

1

||g||
(1− 1

32
√
3c

)−Nγ ≤ N − o(N)

N2
t−Nγ ≤ ||g||2t−iγ = ri+

∑
j ̸=i

⟨vi, vj⟩rj

≤ 0+
∑
j ̸=i

√
10 log(d)

d
|rj | ≤

√
10 log(d)

d

√
N − 1||r|| <

√
10 log(d)

d

√
N(

1

16
√
3c

+1)

If we assume c > 1
16 , then we have

0 <
1

2
√
N

(1− 1

2
√
3
− 1

2
) <

√
10 log(d)

d

√
N(

1√
3
+ 1)

That is,

0 <
1

2
(
1

2
− 1

2
√
3
) <

√
10 log(d)

d
N(

1√
3
+ 1)

But we know
√

10 log(d)
d N → 0 as d → +∞, contradictory.

Lemma 4: Assume that |⟨vi, vj⟩| ≤
√

10 log(d)
d for all i ̸= j. If t > 0 and

||x0 − tg|| = 1, then x0 − tg = arg min
||x||≤1

f̂(x). Consequently, f̂∗ = f̂(x0 − tg) >

−
√

N+o(N)

N (1 + 1
32

√
3c
) ∼ −O( 1√

N
).
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Proof: Let ∂f̂(x) be the subgradients of f̂ at x. Then by the first order con-
dition of the solution to a convex problem, the boundary point x0 − tg is the

solution if tg−x0 ∈ ∂f̂(x0−tg) = {
N∑
i=1

αivi|αi ≥ 0,∀i}. With tg−x0 =
∑N

i=1 rivi

and since we have shown ri > 0 in Lemma 3, this is obviously true.
Let I(vk1 , vk2 , . . . , vkn) = {x|vTk1

x− k1γ = vTk2
x− k2γ = · · · = vTkn

x− knγ}. For
the lower bound of f̂∗, given that x0 − tg ∈ I(v1, . . . , vN ), we have that

f̂(x0 − tg) = vT1 (x0 − tg)− γ = −tvT1 g = −t||g||2

≥ −||g||(1 + 1

32
√
3c

) > −
√

N + o(N)

N
(1 +

1

32
√
3c

)

Let F (x) = max{d5||Ax||∞ − 1,max
i∈[N ]

vTi x − iγ}, then we have F (x) ≥ f̂(x)

for all x, so F ∗ ≥ f̂∗ = −O( 1√
N
).

Other resulting properties

Lemma 5 Assume that |⟨vi, vj⟩| ≤
√

10 log(d)
d for all i ̸= j. Then the minimum

of F (x) must be taken at the boundary of the unit ball B and is unique.

Proof: Recall that R(vi) = {x ∈ Rd|F (x) = vTi x − iγ} was defined as the
”Realm” of vi. We can generalize the definition of ”Realm” to ai’s in the ma-
trix A in the way that R(ai) = {x ∈ Rd|F (x) = d5aTi x− 1}.
Assume there exists some optimal solution x∗ ∈ int(B), then with optimality
condition, we have 0 ∈ ∂F (x∗) = Conv{ui|x∗ ∈ R(ui)}, where ui can be vi or
ai.

Given that {vi}Ni=1 ∪ {ai}
⌊ d

2 ⌋
i=1 is assumed to be linearly independent, we have

that ui ∈ ∂F (x∗) if and only if x∗ ∈ R(ui).
If x∗ ∈ R(ai) and x∗ ∈ R(−ai), then we have d5aTi x

∗ − 1 = −d5aTi x
∗ − 1, so

F (x∗) = d5aTi x− 1 = −1, which contradicts F ∗ ≥ −O( 1√
N
) → 0.

Therefore, either ai /∈ ∂F (x∗) or −ai /∈ ∂F (x∗). Consequently, {ui|x∗ ∈ R(ui)}
is linearly independent, which indicates that 0 /∈ Conv{ui|x∗ ∈ R(ui)}, contra-
dictory.
Since any optimal solution must be taken at the boundary of the unit ball, if
x∗
1 and x∗

2 are two distinct optimal solutions, then by convexity of the prob-

lem,
x∗
1+x∗

2

2 is also an optimal solution, however,
x∗
1+x∗

2

2 ∈ int(B), contradictory.
Therefore x∗ is unique.

Lemma 6: Any optimal solution x∗ must be in
N⋃
i=1

R(vi).

Proof: If there exists optimal solution x∗ ∈ B and ϵ > 0 such that B(x∗, ϵ) ∩
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B ∩ [
N⋃
i=1

R(vi)] = ∅, then consider F̄ (x) = d5||Ax||∞ − 1. Then x∗ is also an

optimal solution to the problem minimizing F̄ because F̄ |B(x∗,ϵ) = F |B(x∗,ϵ).

Since we already know F̄ (0) = −1 ≪ −O( 1√
N
), we have that F (x∗) = F̄ (x∗) ≤

F̄ (0) = −1 ≪ −O( 1√
N
), which contradicts the result of Lemma 4.
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