
The Memory-constrained Projection Algorithm

Recall
F (x) = (1/d6)max{d5||Ax||∞ − 1,max

i∈[N]
vTi x− γvi}

is the objective we want to minimize over the unit ball B. Let ai ∼ Hd, i =
1, . . . , ⌊d2⌋ denote the rows of A. Notice that our objective is formulated as
the maximum of various components, where d5∥Ax∥∞ − 1 is the maximum at
almost every x ∈ B except those x near the kernel of A. We know that an
optimization method only has access to the maximum component at any given
point, and with limited O(d) memory, we cannot ”remember” the previously
seen components either. To gain a comprehensive view over all components, we
have to design an algorithm that projects any point into KerA efficiently.
Let x̄ = x−Proj(x), where Proj(x) is mathematical projection of x to Ker(A).
Then we have that for all a ∈ Hd,

(I − aaT

d
)x = (I − aaT

d
)(Proj(x) + x̄) = Proj(x)− aaT

d
Proj(x) + (I − aaT

d
)x̄

= Proj(x) + (I − aaT

d
)x̄

The last equality holds because Proj(x) is orthogonal to the rows of A. Therefore

m∏
i=1

(I −
akia

T
ki

d
)x0 = Proj(x0) +

m∏
i=1

(I −
aki

aTki

d
)x̄0

The intuition is that every step the following algorithm proceeds equals to mul-

tiplying I − aki
aT
ki

d to x for some aki
, which equals to multiplying I − aki

aT
ki

d to
x̄ and leave Proj(x) unchanged.

Algorithm 1 The Memory-constrained Projection Algorithm

Input: x
(u, f)← Query(x) ▷ u and f are gradient and function value respectively.
while ∥u∥2 > d−1 do ▷ ∥u∥2 > d−1 indicates that u = d−1ai for some i.

x← x− ⟨x, u⟩/∥u∥2
(v, f)← Query(x)

end while
Return x

Convergence Analysis

For any x, maxi≤⌊ d
2 ⌋
|aTi x| = maxi≤⌊ d

2 ⌋
|aTi x̄| holds. And

max
i≤⌊ d

2 ⌋
|aTi x̄| = ||Ax̄||∞ ≥

||Ax̄||2√
d
≥ σmin|x̄|√

d

1

Where σmin is the smallest singular value of A. (Decompose A = UΣV T and
given that x̄ ∈ Ker(A)⊥, the diagonal coefficients acting on V T x̄ can only
be nonzero, thus lower bounded by the minimum singular value.) With the
following theorem from Terence Tao’s matrix book:

Take δ = 1
2 , we have that σmin is greater than C

√
d for some constant C

with high probability. Therefore we have that

|
aki

aTki

d
x̄| =

|aki
||aTki

x̄|
d

=
|aki
|

d
max
i≤⌊ d

2 ⌋
|aTi x| ≥

|aki
|

d

σmin|x̄|√
d

= σmin
|x̄|
d
≥ C√

d
|x̄|

The last inequality holds w.h.p. Therefore

|(I −
akia

T
ki

d
)x̄| ≤

√
1− C2

d
|x̄|

And the iterations it takes to convergent given ϵ and |x| = 1 is

log√
1−C2

d

ϵ = O(d log(
1

ϵ
))

Let R(vi) := {x|F (x) = vTi x − iγ} be the ”Realm” of vi. However, note that

once it reaches
N⋃
i=1

R(vi), the projection algorithm cannot proceed anymore.

Though an arbitrarily close projection into Ker(A) is not achievable, the output
of this algorithm is already close enough for some further applications. The
following paragraph is cited from a document that I have recently been working
on, which attempts to view all vi, i = 1 . . . N in O(N) iterations. Once we can
see all gradients efficiently under constrained memory, we may optimize F (x)
efficiently.

Example of usage in my recent work

“Let fv(x) = ⟨v, x⟩ − γv, and

F (x) = max
{

max
i=1...N

fvi(x), d
5∥Ax∥∞ − 1

}
, x ∈ B

where A ∈ Rp×d. Let lF and uF denote the lower and upper bound respectively,
of maxi=1...N fvi(x). Note that in the special case of Marsden et al. fvi(x) =

2

⟨vi, x⟩ − iγ, and lF = −O(1/
√
N). Further, consider

U =
{
x|∥Ax∥∞ ≤ d−5(1 + uF)

}
L =

{
x|∥Ax∥∞ ≤ d−5(1 + lF)

}
Recall that R(vk1 , vk2 , . . . , vkn) := {x|F (x) = vTk1

x − k1γ = · · · = vTkn
x − knγ}.

Write R(V) for the short hand of R(v1, . . . , vN), then it’s easy to see that L ⊆
R(V) ⊆ U .Construct the refined projection algorithm (RP) as follows:

RP (x) = P (P (x)/ ∥P (x)∥) · ∥P (x)∥ ,

where P (x) is the result of running the projection algorithm starting from x. It
is easy to see that for any vector x ∈ B, P (P (x)/ ∥P (x)∥) ∈ R(V) ⊆ U , and

∥A (RP (x))∥∞ ≤ d−5(1 + uF) ∥P (x)∥ ≤ d−5(1 + uF) ∥x∥

(This result might be further improved, but it seems enough for now.)”

3

